BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30236513)

  • 21. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy.
    Kim J; Wende AR; Sena S; Theobald HA; Soto J; Sloan C; Wayment BE; Litwin SE; Holzenberger M; LeRoith D; Abel ED
    Mol Endocrinol; 2008 Nov; 22(11):2531-43. PubMed ID: 18801929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AMPK signaling pathway is rapidly activated by T3 and regulates the cardiomyocyte growth.
    Takano AP; Diniz GP; Barreto-Chaves ML
    Mol Cell Endocrinol; 2013 Aug; 376(1-2):43-50. PubMed ID: 23748029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction.
    Javadov S; Rajapurohitam V; Kilić A; Zeidan A; Choi A; Karmazyn M
    J Mol Cell Cardiol; 2009 Jun; 46(6):998-1007. PubMed ID: 19318234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras.
    Kuster GM; Pimentel DR; Adachi T; Ido Y; Brenner DA; Cohen RA; Liao R; Siwik DA; Colucci WS
    Circulation; 2005 Mar; 111(9):1192-8. PubMed ID: 15723974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons.
    Yu L; Yang SJ
    Neuroscience; 2010 Aug; 169(1):23-38. PubMed ID: 20438809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death.
    Damdimopoulos AE; Miranda-Vizuete A; Pelto-Huikko M; Gustafsson JA; Spyrou G
    J Biol Chem; 2002 Sep; 277(36):33249-57. PubMed ID: 12080052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alcohol induces mitochondrial redox imbalance in alveolar macrophages.
    Liang Y; Harris FL; Jones DP; Brown LAS
    Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway.
    Meng R; Pei Z; Zhang A; Zhou Y; Cai X; Chen B; Liu G; Mai W; Wei J; Dong Y
    Arch Biochem Biophys; 2011 Jul; 511(1-2):1-7. PubMed ID: 21530483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient activation of AMPK preceding left ventricular pressure overload reduces adverse remodeling and preserves left ventricular function.
    Nam DH; Kim E; Benham A; Park HK; Soibam B; Taffet GE; Kaelber JT; Suh JH; Taegtmeyer H; Entman ML; Reineke EL
    FASEB J; 2019 Jan; 33(1):711-721. PubMed ID: 30024790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy.
    Li HL; Yin R; Chen D; Liu D; Wang D; Yang Q; Dong YG
    J Cell Biochem; 2007 Apr; 100(5):1086-99. PubMed ID: 17266062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
    Hinchy EC; Gruszczyk AV; Willows R; Navaratnam N; Hall AR; Bates G; Bright TP; Krieg T; Carling D; Murphy MP
    J Biol Chem; 2018 Nov; 293(44):17208-17217. PubMed ID: 30232152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigallocatechin-3-gallate inhibits angiotensin II-induced cardiomyocyte hypertrophy via regulating Hippo signaling pathway in H9c2 rat cardiomyocytes.
    Ma Y; Hu Y; Wu J; Wen J; Li S; Zhang L; Zhang J; Li Y; Li J
    Acta Biochim Biophys Sin (Shanghai); 2019 Apr; 51(4):422-430. PubMed ID: 30877756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space.
    Hirasaka K; Lago CU; Kenaston MA; Fathe K; Nowinski SM; Nikawa T; Mills EM
    Antioxid Redox Signal; 2011 Nov; 15(10):2645-61. PubMed ID: 21619484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mitochondrial thioredoxin is required for liver development in zebrafish.
    Zhang J; Cui X; Wang L; Liu F; Jiang T; Li C; Li D; Huang M; Liao S; Wang J; Chen J; Jia H; He J; Tang Z; Yin Z; Liu M
    Curr Mol Med; 2014; 14(6):772-82. PubMed ID: 24894169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome.
    Yang B; Huang Y; Zhang H; Huang Y; Zhou HJ; Young L; Xiao H; Min W
    J Mol Cell Cardiol; 2020 Jan; 138():291-303. PubMed ID: 31751569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species.
    Imhoff BR; Hansen JM
    Biochem J; 2009 Dec; 424(3):491-500. PubMed ID: 19778293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis.
    Hansen JM; Zhang H; Jones DP
    Toxicol Sci; 2006 Jun; 91(2):643-50. PubMed ID: 16574777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine activates AMPK to phosphorylate Bcl-XL responsible for mitochondrial damage and DIABLO release in HuH-7 cells.
    Yang D; Yaguchi T; Nakano T; Nishizaki T
    Cell Physiol Biochem; 2011; 27(1):71-8. PubMed ID: 21325824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway.
    Sun L; Zhao M; Yu XJ; Wang H; He X; Liu JK; Zang WJ
    J Cell Physiol; 2013 Jun; 228(6):1238-48. PubMed ID: 23139024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells.
    Wang D; Masutani H; Oka S; Tanaka T; Yamaguchi-Iwai Y; Nakamura H; Yodoi J
    J Biol Chem; 2006 Mar; 281(11):7384-91. PubMed ID: 16407224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.