BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3023663)

  • 1. Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts.
    Grun JB; Brinton MA
    J Virol; 1986 Dec; 60(3):1113-24. PubMed ID: 3023663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BHK cell proteins that bind to the 3' stem-loop structure of the West Nile virus genome RNA.
    Blackwell JL; Brinton MA
    J Virol; 1995 Sep; 69(9):5650-8. PubMed ID: 7637011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro synthesis of Japanese encephalitis virus (JEV) RNA: membrane and nuclear fractions of JEV-infected cells possess high levels of virus-specific RNA polymerase activity.
    Takegami T; Hotta S
    Virus Res; 1989 Aug; 13(4):337-50. PubMed ID: 2816040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell proteins bind specifically to West Nile virus minus-strand 3' stem-loop RNA.
    Shi PY; Li W; Brinton MA
    J Virol; 1996 Sep; 70(9):6278-87. PubMed ID: 8709255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Nile virus strain Kunjin NS5 polymerase is a phosphoprotein localized at the cytoplasmic site of viral RNA synthesis.
    Mackenzie JM; Kenney MT; Westaway EG
    J Gen Virol; 2007 Apr; 88(Pt 4):1163-1168. PubMed ID: 17374759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates.
    Miller WA; Bujarski JJ; Dreher TW; Hall TC
    J Mol Biol; 1986 Feb; 187(4):537-46. PubMed ID: 3754904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro.
    Chu PW; Westaway EG
    Virology; 1987 Apr; 157(2):330-7. PubMed ID: 3029975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pyrimidine derivatives on RNA-dependent RNA polymerase of mengovirus-infected Fogh and Lund (FL) cells.
    Tonew E; Fahlabusch B
    J Gen Virol; 1977 Jan; 34(1):37-45. PubMed ID: 188980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression.
    Kim JK; Kim JM; Song BH; Yun SI; Yun GN; Byun SJ; Lee YM
    PLoS One; 2015; 10(4):e0124318. PubMed ID: 25915765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein.
    Tan CSE; Hobson-Peters JM; Stoermer MJ; Fairlie DP; Khromykh AA; Hall RA
    J Gen Virol; 2013 Sep; 94(Pt 9):1961-1971. PubMed ID: 23740481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro synthesis of double-stranded RNA by carnation cryptic virus-associated RNA-dependent RNA polymerase.
    MarzachĂ­ C; Milne RG; Boccardo G
    Virology; 1988 Jul; 165(1):115-21. PubMed ID: 3388765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poliovirus replicase stimulation by terminal uridylyl transferase.
    Andrews NC; Levin D; Baltimore D
    J Biol Chem; 1985 Jun; 260(12):7628-35. PubMed ID: 2987262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection.
    Lopez-Denman AJ; Russo A; Wagstaff KM; White PA; Jans DA; Mackenzie JM
    Cell Microbiol; 2018 Aug; 20(8):e12848. PubMed ID: 29582535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNase L plays a role in the antiviral response to West Nile virus.
    Scherbik SV; Paranjape JM; Stockman BM; Silverman RH; Brinton MA
    J Virol; 2006 Mar; 80(6):2987-99. PubMed ID: 16501108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.
    Selisko B; Dutartre H; Guillemot JC; Debarnot C; Benarroch D; Khromykh A; Desprès P; Egloff MP; Canard B
    Virology; 2006 Jul; 351(1):145-58. PubMed ID: 16631221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired heterologous protein-protein interaction is an essential cause for non-viability of WNV/DENV recombinants.
    Lei Y; Takeda K; Yu L
    Virology; 2018 Nov; 524():140-150. PubMed ID: 30195251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vector derived artificial miRNA mediated inhibition of West Nile virus replication and protein expression.
    Karothia D; Kumar Dash P; Parida M; Bhagyawant SS; Kumar JS
    Gene; 2020 Mar; 729():144300. PubMed ID: 31884102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and functions of Japanese encephalitis virus nonstructural proteins NS3 and NS5 for viral RNA synthesis in the infected cells.
    Edward Z; Takegami T
    Microbiol Immunol; 1993; 37(3):239-43. PubMed ID: 8321152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and ultrastructural analysis of heavy membrane fractions associated with the replication of Kunjin virus RNA.
    Chu PW; Westaway EG
    Arch Virol; 1992; 125(1-4):177-91. PubMed ID: 1322651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication.
    Li W; Li Y; Kedersha N; Anderson P; Emara M; Swiderek KM; Moreno GT; Brinton MA
    J Virol; 2002 Dec; 76(23):11989-2000. PubMed ID: 12414941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.