These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30236648)
1. Freeze drying of polyelectrolyte complex nanoparticles: Effect of nanoparticle composition and cryoprotectant selection. Umerska A; Paluch KJ; Santos-Martinez MJ; Corrigan OI; Medina C; Tajber L Int J Pharm; 2018 Dec; 552(1-2):27-38. PubMed ID: 30236648 [TBL] [Abstract][Full Text] [Related]
2. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles. Curcio M; Blanco-Fernández B; Costoya A; Concheiro A; Puoci F; Alvarez-Lorenzo C Eur J Pharm Biopharm; 2015 Jun; 93():281-92. PubMed ID: 25917641 [TBL] [Abstract][Full Text] [Related]
3. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462 [TBL] [Abstract][Full Text] [Related]
4. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Doktorovova S; Shegokar R; Fernandes L; Martins-Lopes P; Silva AM; Müller RH; Souto EB Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511 [TBL] [Abstract][Full Text] [Related]
6. Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol. Ramos Yacasi GR; García López ML; Espina García M; Parra Coca A; Calpena Campmany AC Int J Nanomedicine; 2016; 11():4093-106. PubMed ID: 27601897 [TBL] [Abstract][Full Text] [Related]
7. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. Lee MK; Kim MY; Kim S; Lee J J Pharm Sci; 2009 Dec; 98(12):4808-17. PubMed ID: 19475555 [TBL] [Abstract][Full Text] [Related]
8. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
9. Chitosan nanoparticles: preparation, size evolution and stability. Rampino A; Borgogna M; Blasi P; Bellich B; Cesàro A Int J Pharm; 2013 Oct; 455(1-2):219-28. PubMed ID: 23886649 [TBL] [Abstract][Full Text] [Related]
10. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S; Dillen K; Vandervoort J; Ludwig A J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924 [TBL] [Abstract][Full Text] [Related]
11. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
12. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Diop M; Auberval N; Viciglio A; Langlois A; Bietiger W; Mura C; Peronet C; Bekel A; Julien David D; Zhao M; Pinget M; Jeandidier N; Vauthier C; Marchioni E; Frere Y; Sigrist S Int J Pharm; 2015 Aug; 491(1-2):402-8. PubMed ID: 26049075 [TBL] [Abstract][Full Text] [Related]
13. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related]
14. Towards a clinical application of freeze-dried squalene-based nanomedicines. Rouquette M; Ser-Le Roux K; Polrot M; Bourgaux C; Michel JP; Testard F; Gobeaux F; Lepetre-Mouelhi S J Drug Target; 2019; 27(5-6):699-708. PubMed ID: 30786788 [TBL] [Abstract][Full Text] [Related]
15. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. Wang L; Ma Y; Gu Y; Liu Y; Zhao J; Yan B; Wang Y J Microencapsul; 2018 May; 35(3):241-248. PubMed ID: 29624090 [TBL] [Abstract][Full Text] [Related]
16. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Elbrink K; Van Hees S; Holm R; Kiekens F Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084 [TBL] [Abstract][Full Text] [Related]
17. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques. Guo Y; Baldelli A; Singh A; Fathordoobady F; Kitts D; Pratap-Singh A Sci Rep; 2022 Jun; 12(1):9949. PubMed ID: 35705561 [TBL] [Abstract][Full Text] [Related]
18. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Hu Q; Wang T; Zhou M; Xue J; Luo Y Int J Biol Macromol; 2016 Nov; 92():812-819. PubMed ID: 27475234 [TBL] [Abstract][Full Text] [Related]
19. Chondroitin-based nanoplexes as peptide delivery systems--Investigations into the self-assembly process, solid-state and extended release characteristics. Umerska A; Paluch KJ; Santos-Martinez MJ; Medina C; Corrigan OI; Tajber L Eur J Pharm Biopharm; 2015 Jun; 93():242-53. PubMed ID: 25907005 [TBL] [Abstract][Full Text] [Related]
20. Exploring the assembly process and properties of novel crosslinker-free hyaluronate-based polyelectrolyte complex nanocarriers. Umerska A; Paluch KJ; Inkielewicz-Stępniak I; Santos-Martinez MJ; Corrigan OI; Medina C; Tajber L Int J Pharm; 2012 Oct; 436(1-2):75-87. PubMed ID: 22814226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]