These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30236649)
1. Granule formation and structure from single drop impact on heterogeneous powder beds. Gao T; Singaravelu ASS; Oka S; Ramachandran R; Štepánek F; Chawla N; Emady HN Int J Pharm; 2018 Dec; 552(1-2):56-66. PubMed ID: 30236649 [TBL] [Abstract][Full Text] [Related]
2. 4D study of liquid binder penetration dynamics in pharmaceutical powders using synchrotron X-ray micro computed tomography. Danalou SZ; Ding XF; Zhu N; Emady HN; Zhang L Int J Pharm; 2022 Nov; 627():122192. PubMed ID: 36116689 [TBL] [Abstract][Full Text] [Related]
3. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. Osei-Yeboah F; Feng Y; Sun CC J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097 [TBL] [Abstract][Full Text] [Related]
4. A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition. Kayrak-Talay D; Litster JD Int J Pharm; 2011 Oct; 418(2):254-64. PubMed ID: 21530625 [TBL] [Abstract][Full Text] [Related]
5. Drug distribution in wet granulation: foam versus spray. Tan MX; Nguyen TH; Hapgood KP Drug Dev Ind Pharm; 2013 Sep; 39(9):1389-400. PubMed ID: 23057532 [TBL] [Abstract][Full Text] [Related]
7. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545 [TBL] [Abstract][Full Text] [Related]
8. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword. Shi L; Feng Y; Sun CC Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948 [TBL] [Abstract][Full Text] [Related]
9. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation. Noguchi S; Kajihara R; Iwao Y; Fujinami Y; Suzuki Y; Terada Y; Uesugi K; Miura K; Itai S Int J Pharm; 2013 Mar; 445(1-2):93-8. PubMed ID: 23376507 [TBL] [Abstract][Full Text] [Related]
10. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose. Aoki H; Iwao Y; Uchimoto T; Noguchi S; Kajihara R; Takahashi K; Ishida M; Terada Y; Suzuki Y; Itai S Int J Pharm; 2015 Jan; 478(2):530-9. PubMed ID: 25434591 [TBL] [Abstract][Full Text] [Related]
11. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation. Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358 [TBL] [Abstract][Full Text] [Related]
12. Synchrotron-based X-ray in-situ imaging techniques for advancing the understanding of pharmaceutical granulation. Li C; Zhu N; Emady HN; Zhang L Int J Pharm; 2019 Dec; 572():118797. PubMed ID: 31678383 [TBL] [Abstract][Full Text] [Related]
13. Drop penetration into porous powder beds. Hapgood KP; Litster JD; Biggs SR; Howes T J Colloid Interface Sci; 2002 Sep; 253(2):353-66. PubMed ID: 16290866 [TBL] [Abstract][Full Text] [Related]
14. The effect of vessel material on granules produced in a high-shear mixer. Bouwman AM; Visser MR; Eissens AC; Wesselingh JA; Frijlink HW Eur J Pharm Sci; 2004 Oct; 23(2):169-79. PubMed ID: 15451005 [TBL] [Abstract][Full Text] [Related]
15. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation. Bouwman AM; Henstra MJ; Westerman D; Chung JT; Zhang Z; Ingram A; Seville JP; Frijlink HW Int J Pharm; 2005 Feb; 290(1-2):129-36. PubMed ID: 15664138 [TBL] [Abstract][Full Text] [Related]
16. To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools. Chaudhari SP; Dave RH Drug Dev Ind Pharm; 2015 May; 41(5):744-52. PubMed ID: 24654935 [TBL] [Abstract][Full Text] [Related]
17. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation. Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Durić Z Int J Pharm; 2012 Feb; 423(2):202-12. PubMed ID: 22197773 [TBL] [Abstract][Full Text] [Related]
18. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy. Otsuka M; Mouri Y; Matsuda Y AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979 [TBL] [Abstract][Full Text] [Related]
19. Combining formulation and process aspects for optimizing the high-shear wet granulation of common drugs. Cavinato M; Andreato E; Bresciani M; Pignatone I; Bellazzi G; Franceschinis E; Realdon N; Canu P; Santomaso AC Int J Pharm; 2011 Sep; 416(1):229-41. PubMed ID: 21763764 [TBL] [Abstract][Full Text] [Related]
20. Process optimization for continuous extrusion wet granulation. Tan L; Carella AJ; Ren Y; Lo JB Pharm Dev Technol; 2011 Aug; 16(4):302-15. PubMed ID: 20367553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]