BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30236977)

  • 1. The effect of pleural fluid layers on lung surface wave speed measurement: Experimental and numerical studies on a sponge lung phantom.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2019 Jan; 89():13-18. PubMed ID: 30236977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a Thin Fluid Layer on Surface Wave Speed Measurements: A Lung Phantom Study.
    Zhou J; Zhang X
    J Ultrasound Med; 2019 May; 38(5):1361-1365. PubMed ID: 30208217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lung Phantom Model to Study Pulmonary Edema Using Lung Ultrasound Surface Wave Elastography.
    Zhou J; Zhang X
    Ultrasound Med Biol; 2018 Nov; 44(11):2400-2405. PubMed ID: 30077412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures.
    Zhou B; Sit AJ; Zhang X
    Ultrasonics; 2017 Nov; 81():86-92. PubMed ID: 28618301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.
    Zhou B; Zhang X
    Ultrasonics; 2018 Sep; 89():173-177. PubMed ID: 29852466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B-line Elastography Measurement of Lung Parenchymal Elasticity.
    Koda R; Taniguchi H; Konno K; Yamakoshi Y
    Ultrason Imaging; 2023 Jan; 45(1):30-41. PubMed ID: 36631936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ex vivo technique for quantifying mouse lung injury using ultrasound surface wave elastography.
    Zhou B; Schaefbauer KJ; Egan AM; Carmona Porquera EM; Limper AH; Zhang X
    J Biomech; 2020 Jan; 98():109468. PubMed ID: 31708243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of strain images of a breast-mimicking phantom from 3D CT image data.
    Kim JG; Aowlad Hossain AB; Shin JH; Lee SY
    Med Phys; 2012 Sep; 39(9):5469-78. PubMed ID: 22957614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.
    Zhang X; Osborn T; Kalra S
    Ultrasonics; 2016 Sep; 71():183-188. PubMed ID: 27392204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound elastography using shear wave interference patterns: a finite element study of affecting factors.
    Pasyar P; Arabalibeik H; Mohammadi M; Rezazadeh H; Sadeghi V; Askari M; Mirbagheri A
    Phys Eng Sci Med; 2021 Mar; 44(1):253-263. PubMed ID: 33591540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative method for measuring the changes of lung surface wave speed for assessing disease progression of interstitial lung disease.
    Zhang X; Zhou B; Bartholmai B; Kalra S; Osborn T
    Ultrasound Med Biol; 2019 Mar; 45(3):741-748. PubMed ID: 30598191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel breast software phantom for biomechanical modeling of elastography.
    Bhatti SN; Sridhar-Keralapura M
    Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting target displacements using ultrasound elastography and finite element modeling.
    op den Buijs J; Hansen HH; Lopata RG; de Korte CL; Misra S
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3143-55. PubMed ID: 21846601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided wave elastography of layered soft tissues.
    Li GY; Zheng Y; Jiang YX; Zhang Z; Cao Y
    Acta Biomater; 2019 Jan; 84():293-304. PubMed ID: 30528611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung Ultrasound Surface Wave Elastography for Assessing Patients With Pulmonary Edema.
    Wiley BM; Zhou B; Pandompatam G; Zhou J; Kucuk HO; Zhang X
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3417-3423. PubMed ID: 33848239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion effects on the measurement of stiffness on ultrasound shear wave elastography: a moving liver fibrosis phantom study.
    Shin HJ; Kim MJ; Yoon CS; Lee K; Lee KS; Park JC; Lee MJ; Yoon H
    Med Ultrason; 2018 Feb; 1(1):14-20. PubMed ID: 29400362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.