These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30238076)

  • 1. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis.
    Ono S; Tsujimoto H; Hiraki S; Aosasa S
    Ann Gastroenterol Surg; 2018 Sep; 2(5):351-358. PubMed ID: 30238076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy: A promising approach to reverse sepsis-induced immunosuppression.
    Patil NK; Bohannon JK; Sherwood ER
    Pharmacol Res; 2016 Sep; 111():688-702. PubMed ID: 27468649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression.
    Shindo Y; Unsinger J; Burnham CA; Green JM; Hotchkiss RS
    Shock; 2015 Apr; 43(4):334-43. PubMed ID: 25565644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?
    Boomer JS; Green JM; Hotchkiss RS
    Virulence; 2014 Jan; 5(1):45-56. PubMed ID: 24067565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach.
    Hotchkiss RS; Monneret G; Payen D
    Lancet Infect Dis; 2013 Mar; 13(3):260-8. PubMed ID: 23427891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoadjuvant therapy in sepsis: novel strategies for immunosuppressive sepsis coming down the pike.
    Watanabe E; Thampy LK; Hotchkiss RS
    Acute Med Surg; 2018 Oct; 5(4):309-315. PubMed ID: 30338075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in immunotherapeutic research of sepsis].
    Dong L; Lyu J; Ding L; Liu Z
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Feb; 29(2):184-187. PubMed ID: 28625271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis.
    Chang K; Svabek C; Vazquez-Guillamet C; Sato B; Rasche D; Wilson S; Robbins P; Ulbrandt N; Suzich J; Green J; Patera AC; Blair W; Krishnan S; Hotchkiss R
    Crit Care; 2014 Jan; 18(1):R3. PubMed ID: 24387680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis.
    Liu Q; Li CS
    Chin Med J (Engl); 2017 Apr; 130(8):986-992. PubMed ID: 28397730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long Noncoding RNA HOTAIRM1 Promotes Immunosuppression in Sepsis by Inducing T Cell Exhaustion.
    Chen W; Liu J; Ge F; Chen Z; Qu M; Nan K; Gu J; Jiang Y; Gao S; Liao Y; Wang C; Zhang H; Miao C
    J Immunol; 2022 Feb; 208(3):618-632. PubMed ID: 35022270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of dendritic cells on immune function regulated by programmed cell death-1/programmed cell death-ligand 1 in sepsis].
    Wang Z; Xie Z; Zhao Y; Bu T; Yu A; Wang S
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Sep; 33(9):1032-1039. PubMed ID: 34839857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune Modulation and Cytomegalovirus Reactivation in Sepsis-induced Immunosuppression: A Pilot Study.
    Lambe G; Mansukhani D; Khodaiji S; Shetty A; Rodrigues C; Kapadia F
    Indian J Crit Care Med; 2022 Jan; 26(1):53-61. PubMed ID: 35110845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis.
    Chang KC; Burnham CA; Compton SM; Rasche DP; Mazuski RJ; McDonough JS; Unsinger J; Korman AJ; Green JM; Hotchkiss RS
    Crit Care; 2013 May; 17(3):R85. PubMed ID: 23663657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Exhaustion Markers on CD8+ T-Cell Patterns Predict Outcomes in Septic Patients Admitted to the ICU.
    Guinault D; Nicolau-Travers ML; Silva S; Cointault O; Daniau B; Del Bello A; Peres M; Rousset D; Rieunier J; Lavayssiere L; Nogier MB; Hourcastagnou E; Mari A; Kamar N; Vergez F; Faguer S
    Crit Care Med; 2021 Sep; 49(9):1513-1523. PubMed ID: 33900216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4
    Ge Y; Huang M; Wu Y; Dong N; Yao YM
    J Cell Mol Med; 2020 Jan; 24(2):2027-2039. PubMed ID: 31880383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options.
    Liu D; Huang SY; Sun JH; Zhang HC; Cai QL; Gao C; Li L; Cao J; Xu F; Zhou Y; Guan CX; Jin SW; Deng J; Fang XM; Jiang JX; Zeng L
    Mil Med Res; 2022 Oct; 9(1):56. PubMed ID: 36209190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent Sepsis Exacerbates CD4
    He W; Xiao K; Xu J; Guan W; Xie S; Wang K; Yan P; Fang M; Xie L
    Front Immunol; 2021; 12():627435. PubMed ID: 33717146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory role of the programmed cell death 1 signaling pathway in sepsis induced immunosuppression.
    Zhong S; Yin Y
    Front Immunol; 2023; 14():1183542. PubMed ID: 37292207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The new normal: immunomodulatory agents against sepsis immune suppression.
    Hutchins NA; Unsinger J; Hotchkiss RS; Ayala A
    Trends Mol Med; 2014 Apr; 20(4):224-33. PubMed ID: 24485901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the understanding and treatment of sepsis-induced immunosuppression.
    Venet F; Monneret G
    Nat Rev Nephrol; 2018 Feb; 14(2):121-137. PubMed ID: 29225343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.