These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30238107)

  • 1. Study of volume and surface plasmons in small silicon-hydrogen nanoclusters using the GW method.
    Matsko NL
    Phys Chem Chem Phys; 2018 Oct; 20(38):24933-24939. PubMed ID: 30238107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of electron correlations on the energetics and stability of silicon nanoclusters.
    Matsko NL; Tikhonov EV; Baturin VS; Lepeshkin SV; Oganov AR
    J Chem Phys; 2016 Aug; 145(7):074313. PubMed ID: 27544111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of passivated silicon nanoclusters: the role of synthesis.
    Draeger EW; Grossman JC; Williamson AJ; Galli G
    J Chem Phys; 2004 Jun; 120(22):10807-14. PubMed ID: 15268108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmons in Finite Spherical Electrolyte Systems: RPA Effective Jellium Model for Ionic Plasma Excitations.
    Jacak WA
    Plasmonics; 2016; 11():637-651. PubMed ID: 27069439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmons in supported size-selected silver nanoclusters.
    Lünskens T; Heister P; Thämer M; Walenta CA; Kartouzian A; Heiz U
    Phys Chem Chem Phys; 2015 Jul; 17(27):17541-4. PubMed ID: 26037213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface.
    Lepeshkin S; Baturin V; Tikhonov E; Matsko N; Uspenskii Y; Naumova A; Feya O; Schoonen MA; Oganov AR
    Nanoscale; 2016 Nov; 8(44):18616-18620. PubMed ID: 27786331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation into the melting of silicon nanoclusters using molecular dynamics simulations.
    Fang KC; Weng CI
    Nanotechnology; 2005 Feb; 16(2):250-6. PubMed ID: 21727431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoabsorption by volume plasmons in metal nanoclusters.
    Xia C; Yin C; Kresin VV
    Phys Rev Lett; 2009 Apr; 102(15):156802. PubMed ID: 19518666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and electronic spectra of CdSe-Cys complexes: density functional theory study of a simple peptide-coated nanocluster.
    Chung SY; Lee S; Liu C; Neuhauser D
    J Phys Chem B; 2009 Jan; 113(1):292-301. PubMed ID: 19049305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient silicon surface and cluster modeling using quantum capping potentials.
    DiLabio GA; Wolkow RA; Johnson ER
    J Chem Phys; 2005 Jan; 122(4):44708. PubMed ID: 15740284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What silicon nanocluster is most likely formed in etching experiments? Theoretical DFT study.
    Zhanpeisov NU; Fukumura H
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3478-82. PubMed ID: 19051898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization.
    Toudert J; Babonneau D; Simonot L; Camelio S; Girardeau T
    Nanotechnology; 2008 Mar; 19(12):125709. PubMed ID: 21817750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study.
    Mudedla SK; Azhagiya Singam ER; Balamurugan K; Subramanian V
    Phys Chem Chem Phys; 2015 Nov; 17(45):30307-17. PubMed ID: 26508176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of bulk and surface-losses in low-loss EELS measurements in STEM.
    Mkhoyan KA; Babinec T; Maccagnano SE; Kirkland EJ; Silcox J
    Ultramicroscopy; 2007; 107(4-5):345-55. PubMed ID: 17074441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemistry of silicon nanoclusters.
    Puzder A; Williamson AJ; Grossman JC; Galli G
    Phys Rev Lett; 2002 Mar; 88(9):097401. PubMed ID: 11864049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmons in molecules: microscopic characterization based on orbital transitions and momentum conservation.
    Krauter CM; Schirmer J; Jacob CR; Pernpointner M; Dreuw A
    J Chem Phys; 2014 Sep; 141(10):104101. PubMed ID: 25217898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlocal screening of plasmons in graphene by semiconducting and metallic substrates: first-principles calculations.
    Yan J; Thygesen KS; Jacobsen KW
    Phys Rev Lett; 2011 Apr; 106(14):146803. PubMed ID: 21561211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding.
    Zhao XJ; Xue XL; Guo ZX; Jia Y; Li SF; Zhang Z; Gao YF
    J Chem Phys; 2015 Nov; 143(17):174302. PubMed ID: 26547165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Dual-Ion Beam Sputter-Instigated Plasmon Generation in TCOs: A Case Study of GZO.
    Garg V; Sengar BS; Awasthi V; Kumar A; Singh R; Kumar S; Mukherjee C; Atuchin VV; Mukherjee S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5464-5474. PubMed ID: 29356500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.