BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30238548)

  • 1. The configuration of DMD and the maximum intensity projection method for improving contrast in DMD-based confocal microscope.
    Chang M; Zhang Z; Zhang X; He M; Qiu Z; Xu J
    Microsc Res Tech; 2018 Sep; 81(9):1017-1023. PubMed ID: 30238548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of maximum intensity projection and digitally reconstructed radiographic projection for carotid artery stenosis measurement.
    Hyde DE; Habets DF; Fox AJ; Gulka I; Kalapos P; Lee DH; Pelz DM; Holdsworth DW
    Med Phys; 2007 Jul; 34(7):2968-74. PubMed ID: 17822005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.
    Cheng J; Gu C; Zhang D; Wang D; Chen SC
    Opt Lett; 2016 Apr; 41(7):1451-4. PubMed ID: 27192259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel detection experiment of fluorescence confocal microscopy using DMD.
    Wang Q; Zheng J; Wang K; Gui K; Guo H; Zhuang S
    Scanning; 2016 May; 38(3):234-9. PubMed ID: 26331288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique.
    Chen R; Liu H; Zhang H; Zhang W; Xu J; Xu W; Li J
    Opt Express; 2017 Sep; 25(18):21958-21968. PubMed ID: 29041486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum intensity projection using bidirectional compositing with block skipping.
    Kwon O; Kang ST; Kim SH; Kim YH; Shin YG
    J Xray Sci Technol; 2015; 23(1):33-44. PubMed ID: 25567405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera.
    Ri S; Fujigaki M; Morimoto Y
    Appl Opt; 2008 Oct; 47(29):5400-7. PubMed ID: 18846182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. softMip: a novel projection algorithm for ultra-low-dose computed tomography.
    Meyer H; Juran R; Rogalla P
    J Comput Assist Tomogr; 2008; 32(3):480-4. PubMed ID: 18520560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small vessel enhancement in MRA images using local maximum mean processing.
    Sun Y; Parker D
    IEEE Trans Image Process; 2001; 10(11):1687-99. PubMed ID: 18255511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pixel reassignment in image scanning microscopy: a re-evaluation.
    Sheppard CJR; Castello M; Tortarolo G; Deguchi T; Koho SV; Vicidomini G; Diaspro A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jan; 37(1):154-162. PubMed ID: 32118893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast progressive method of maximum intensity projection.
    Kim KH; Park HW
    Comput Med Imaging Graph; 2001; 25(5):433-41. PubMed ID: 11390198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moirĂ© method.
    Ri S; Fujigaki M; Matui T; Morimoto Y
    Appl Opt; 2006 Sep; 45(27):6940-6. PubMed ID: 16946769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic performance of three-dimensional MR maximum intensity projection for the assessment of synovitis of the hand and wrist in rheumatoid arthritis: A pilot study.
    Li X; Liu X; Du X; Ye Z
    Eur J Radiol; 2014 May; 83(5):797-800. PubMed ID: 24613550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and clinical studies of image acquisition in breath-hold MR cholangiopancreatography: single-shot projection technique versus multislice technique.
    Yamashita Y; Abe Y; Tang Y; Urata J; Sumi S; Takahashi M
    AJR Am J Roentgenol; 1997 Jun; 168(6):1449-54. PubMed ID: 9168706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital micromirror devices: principles and applications in imaging.
    Bansal V; Saggau P
    Cold Spring Harb Protoc; 2013 May; 2013(5):404-11. PubMed ID: 23637366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection.
    Lee EJ; Kim TW; Weinreb RN
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7576-82. PubMed ID: 23074212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance analysis of maximum intensity projection algorithm for display of MRA images.
    Sun Y; Parker DL
    IEEE Trans Med Imaging; 1999 Dec; 18(12):1154-69. PubMed ID: 10695528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive GPU-based maximum intensity projection of large medical data sets using visibility culling based on the initial occluder and the visible block classification.
    Kye H; Sohn BS; Lee J
    Comput Med Imaging Graph; 2012 Jul; 36(5):366-74. PubMed ID: 22564547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D MR angiography of renal arteries: comparison of volume rendering and maximum intensity projection algorithms.
    Mallouhi A; Schocke M; Judmaier W; Wolf C; Dessl A; Czermak BV; Waldenberger P; Jaschke WR
    Radiology; 2002 May; 223(2):509-16. PubMed ID: 11997561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optical sectioning programmable array microscope implemented with a digital micromirror device.
    Hanley QS; Verveer PJ; Gemkow MJ; Arndt-Jovin D; Jovin TM
    J Microsc; 1999 Dec; 196(Pt 3):317-31. PubMed ID: 10594772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.