BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30238566)

  • 1. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation.
    Buitenwerf R; Sandel B; Normand S; Mimet A; Svenning JC
    Glob Chang Biol; 2018 Dec; 24(12):5789-5801. PubMed ID: 30238566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.
    Mishra NB; Mainali KP
    Sci Total Environ; 2017 Jun; 587-588():326-339. PubMed ID: 28245933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.
    Brandt M; Mbow C; Diouf AA; Verger A; Samimi C; Fensholt R
    Glob Chang Biol; 2015 Apr; 21(4):1610-20. PubMed ID: 25400243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attribution of seasonal leaf area index trends in the northern latitudes with "optimally" integrated ecosystem models.
    Zhu Z; Piao S; Lian X; Myneni RB; Peng S; Yang H
    Glob Chang Biol; 2017 Nov; 23(11):4798-4813. PubMed ID: 28417528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment.
    Liu P; Hao L; Pan C; Zhou D; Liu Y; Sun G
    Sci Total Environ; 2017 Jul; 589():73-88. PubMed ID: 28264774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and attribution of vegetation greening trend in China over the last 30 years.
    Piao S; Yin G; Tan J; Cheng L; Huang M; Li Y; Liu R; Mao J; Myneni RB; Peng S; Poulter B; Shi X; Xiao Z; Zeng N; Zeng Z; Wang Y
    Glob Chang Biol; 2015 Apr; 21(4):1601-9. PubMed ID: 25369401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth.
    Forzieri G; Alkama R; Miralles DG; Cescatti A
    Science; 2017 Jun; 356(6343):1180-1184. PubMed ID: 28546316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of global vegetation greenup from combined effects of climate change and human land management.
    Wang L; Tian F; Wang Y; Wu Z; Schurgers G; Fensholt R
    Glob Chang Biol; 2018 Nov; 24(11):5484-5499. PubMed ID: 29963745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A global increase in tree cover extends the growing season length as observed from satellite records.
    Fang Z; Brandt M; Wang L; Fensholt R
    Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011).
    Garonna I; de Jong R; de Wit AJ; Mücher CA; Schmid B; Schaepman ME
    Glob Chang Biol; 2014 Nov; 20(11):3457-70. PubMed ID: 24797086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite-observed increasing coupling between vegetation productivity and greenness in the semiarid Loess Plateau of China is not captured by process-based models.
    Tian F; Zhu Z; Cao S; Zhao W; Li M; Wu J
    Sci Total Environ; 2024 Jan; 906():167664. PubMed ID: 37832667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The greening of the Northern Great Plains and its biogeochemical precursors.
    Brookshire ENJ; Stoy PC; Currey B; Finney B
    Glob Chang Biol; 2020 Oct; 26(10):5404-5413. PubMed ID: 32289875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent sensitivity of vegetation to aridity between drylands and humid regions.
    Zhang G; He Y; Huang J; Fu L; Han D; Guan X; Zhang B
    Sci Total Environ; 2023 Aug; 884():163910. PubMed ID: 37142034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
    Krishnaswamy J; John R; Joseph S
    Glob Chang Biol; 2014 Jan; 20(1):203-15. PubMed ID: 23966269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).
    Reichenau TG; Korres W; Montzka C; Fiener P; Wilken F; Stadler A; Waldhoff G; Schneider K
    PLoS One; 2016; 11(7):e0158451. PubMed ID: 27391858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-driven vegetation greening further reduces water availability in drylands.
    Chen Z; Wang W; Cescatti A; Forzieri G
    Glob Chang Biol; 2023 Mar; 29(6):1628-1647. PubMed ID: 36524280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land abandonment as driver of woody vegetation dynamics in Tamaulipan thornscrub at Northeastern Mexico.
    Alanís-Rodríguez E; Martínez-Adriano CA; Sanchez-Castillo L; Rubio-Camacho EA; Valdecantos A
    PeerJ; 2023; 11():e15438. PubMed ID: 37250723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Changes in Dryland Vegetation Greenness over East Inner Mongolia, China, in Recent Years from Satellite Time Series.
    Ding C; Huang W; Li Y; Zhao S; Huang F
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.