These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3023868)

  • 61. Structural and functional studies of insertion element IS200.
    Lam S; Roth JR
    J Mol Biol; 1986 Jan; 187(2):157-67. PubMed ID: 3009825
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sequences required for transcriptional initiation of the Saccharomyces cerevisiae CYC7 genes.
    Healy AM; Helser TL; Zitomer RS
    Mol Cell Biol; 1987 Oct; 7(10):3785-91. PubMed ID: 3316987
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rho-dependent transcription termination in the tyrT operon of Escherichia coli.
    Madden KA; Landy A
    Gene; 1989; 76(2):271-80. PubMed ID: 2473941
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region.
    Russell DW; Jensen R; Zoller MJ; Burke J; Errede B; Smith M; Herskowitz I
    Mol Cell Biol; 1986 Dec; 6(12):4281-94. PubMed ID: 3025649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transcription signals in a region essential for replication of plasmid R6K.
    Shafferman A; Helinski DR
    Plasmid; 1985 Jan; 13(1):51-8. PubMed ID: 3887441
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification and characterization of a new transcriptional termination factor from Escherichia coli.
    Briat JF; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7373-7. PubMed ID: 6095288
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nucleotide sequence of the transcriptional initiation region of the yeast GAL7 gene.
    Nogi Y; Fukasawa T
    Nucleic Acids Res; 1983 Dec; 11(24):8555-68. PubMed ID: 6324089
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bidirectional terminators in Saccharomyces cerevisiae prevent cryptic transcription from invading neighboring genes.
    Uwimana N; Collin P; Jeronimo C; Haibe-Kains B; Robert F
    Nucleic Acids Res; 2017 Jun; 45(11):6417-6426. PubMed ID: 28383698
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A transcription terminator located upstream of the mouse rDNA initiation site affects rRNA synthesis.
    Grummt I; Kuhn A; Bartsch I; Rosenbauer H
    Cell; 1986 Dec; 47(6):901-11. PubMed ID: 3779845
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Expression of human leukocyte interferon type A in Saccharomyces cerevisiae under the control of regulatory elements of the yeast gene URA3].
    Nikoshkov AB; Zlochevskiĭ ML; Naroditskaia VA; Eremashvili MR; Tolstorukov II
    Mol Gen Mikrobiol Virusol; 1987 May; (5):26-32. PubMed ID: 3302687
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rho-dependence of the terminator active at the end of the I region of transcription of bacteriophage f1.
    La Farina M; Vitale M
    Mol Gen Genet; 1984; 195(1-2):5-9. PubMed ID: 6092864
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence.
    Mohamed AH; Chirala SS; Mody NH; Huang WY; Wakil SJ
    J Biol Chem; 1988 Sep; 263(25):12315-25. PubMed ID: 2900835
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transcriptional analysis of the CDC7 protein kinase gene of Saccharomyces cerevisiae.
    Ham J; Moore D; Rosamond J; Johnston IR
    Nucleic Acids Res; 1989 Jul; 17(14):5781-92. PubMed ID: 2668893
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of full-length cDNA clones carrying GAL1 of Saccharomyces cerevisiae: a model system for cDNA expression.
    Miyajima A; Nakayama N; Miyajima I; Arai N; Okayama H; Arai K
    Nucleic Acids Res; 1984 Aug; 12(16):6397-414. PubMed ID: 6206472
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-level expression of the phenylalanine ammonia lyase-encoding gene from Rhodosporidium toruloides in Saccharomyces cerevisiae and Escherichia coli using a bifunctional expression system.
    Faulkner JD; Anson JG; Tuite MF; Minton NP
    Gene; 1994 May; 143(1):13-20. PubMed ID: 8200528
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase.
    Falco SC; Dumas KS; Livak KJ
    Nucleic Acids Res; 1985 Jun; 13(11):4011-27. PubMed ID: 2989783
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region.
    Steensma HY; Crowley JC; Kaback DB
    Mol Cell Biol; 1987 Jan; 7(1):410-9. PubMed ID: 3031471
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure and function of the yeast URA3 gene. Differentially regulated expression of hybrid beta-galactosidase from overlapping coding sequences in yeast.
    Rose M; Botstein D
    J Mol Biol; 1983 Nov; 170(4):883-904. PubMed ID: 6315953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.