These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 30238749)
1. Dihedral Angle Control of Blue Thermally Activated Delayed Fluorescent Emitters through Donor Substitution Position for Efficient Reverse Intersystem Crossing. Oh CS; Pereira DS; Han SH; Park HJ; Higginbotham HF; Monkman AP; Lee JY ACS Appl Mater Interfaces; 2018 Oct; 10(41):35420-35429. PubMed ID: 30238749 [TBL] [Abstract][Full Text] [Related]
2. Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. Woo SJ; Kim Y; Kwon SK; Kim YH; Kim JJ ACS Appl Mater Interfaces; 2019 Feb; 11(7):7199-7207. PubMed ID: 30668117 [TBL] [Abstract][Full Text] [Related]
3. Rational Molecular Design Overcoming the Long Delayed Fluorescence Lifetime and Serious Efficiency Roll-Off in Blue Thermally Activated Delayed Fluorescent Devices. Oh CS; Lee HL; Han SH; Lee JY Chemistry; 2019 Jan; 25(2):642-648. PubMed ID: 30338877 [TBL] [Abstract][Full Text] [Related]
4. Ideal Molecular Design of Blue Thermally Activated Delayed Fluorescent Emitter for High Efficiency, Small Singlet-Triplet Energy Splitting, Low Efficiency Roll-Off, and Long Lifetime. Lee DR; Choi JM; Lee CW; Lee JY ACS Appl Mater Interfaces; 2016 Sep; 8(35):23190-6. PubMed ID: 27529181 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Dias FB Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987577 [TBL] [Abstract][Full Text] [Related]
7. Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet-Triplet Splitting. Zhang D; Zhao C; Zhang Y; Song X; Wei P; Cai M; Duan L ACS Appl Mater Interfaces; 2017 Feb; 9(5):4769-4777. PubMed ID: 28094502 [TBL] [Abstract][Full Text] [Related]
8. Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. Li W; Li M; Li W; Xu Z; Gan L; Liu K; Zheng N; Ning C; Chen D; Wu YC; Su SJ ACS Appl Mater Interfaces; 2021 Feb; 13(4):5302-5311. PubMed ID: 33470809 [TBL] [Abstract][Full Text] [Related]
9. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off. Wu K; Zhang T; Zhan L; Zhong C; Gong S; Jiang N; Lu ZH; Yang C Chemistry; 2016 Jul; 22(31):10860-6. PubMed ID: 27331374 [TBL] [Abstract][Full Text] [Related]
10. An Oligomer Approach for Blue Thermally Activated Delayed Fluorescent Emitters Based on Twisted Donor-Acceptor Units. Duda E; Madayanad Suresh S; Hall D; Bagnich S; Saxena R; Cordes DB; Slawin AMZ; Beljonne D; Olivier Y; Köhler A; Zysman-Colman E Chem Mater; 2023 Mar; 35(5):2027-2037. PubMed ID: 36936179 [TBL] [Abstract][Full Text] [Related]
11. Tuning of the Singlet-Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. Paras ; Ramachandran CN J Fluoresc; 2024 May; 34(3):1343-1351. PubMed ID: 37530934 [TBL] [Abstract][Full Text] [Related]
13. Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Cui LS; Nomura H; Geng Y; Kim JU; Nakanotani H; Adachi C Angew Chem Int Ed Engl; 2017 Feb; 56(6):1571-1575. PubMed ID: 28035781 [TBL] [Abstract][Full Text] [Related]
14. Design Approach of Lifetime Extending Thermally Activated Delayed Fluorescence Sensitizers for Highly Efficient Fluorescence Devices. Yoon SJ; Kim JH; Chung WJ; Lee JY Chemistry; 2021 Feb; 27(9):3065-3073. PubMed ID: 33188526 [TBL] [Abstract][Full Text] [Related]
15. Organic Emitters with a Rigid 9-Phenyl-9-phosphafluorene Oxide Moiety as the Acceptor and Their Thermally Activated Delayed Fluorescence Behavior. Zhong D; Yu Y; Song D; Yang X; Zhang Y; Chen X; Zhou G; Wu Z ACS Appl Mater Interfaces; 2019 Jul; 11(30):27112-27124. PubMed ID: 31271029 [TBL] [Abstract][Full Text] [Related]
16. Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. Kothavale S; Chung WJ; Lee JY ACS Appl Mater Interfaces; 2020 Apr; 12(16):18730-18738. PubMed ID: 32216325 [TBL] [Abstract][Full Text] [Related]
17. Confining donor conformation distributions for efficient thermally activated delayed fluorescence with fast spin-flipping. Qiu W; Liu D; Li M; Cai X; Chen Z; He Y; Liang B; Peng X; Qiao Z; Chen J; Li W; Pu J; Xie W; Wang Z; Li D; Gan Y; Jiao Y; Gu Q; Su SJ Nat Commun; 2023 May; 14(1):2564. PubMed ID: 37142564 [TBL] [Abstract][Full Text] [Related]
18. Efficient Direct Reverse Intersystem Crossing between Charge Transfer-Type Singlet and Triplet States in a Purely Organic Molecule. Wada Y; Wakisaka Y; Kaji H Chemphyschem; 2021 Apr; 22(7):625-632. PubMed ID: 33586264 [TBL] [Abstract][Full Text] [Related]
19. Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process. Luo XF; Xiao X; Zheng YX Chem Commun (Camb); 2024 Jan; 60(9):1089-1099. PubMed ID: 38175168 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study on the influence of substitution position on the luminescence properties and charge transfer characteristics of thermally activated delayed fluorescent molecules. Zhang K; Wang X; Cai L; Fan J; Wang CK; Lin L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123718. PubMed ID: 38064965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]