These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30238772)

  • 1. Is HOTAIR really involved in neuroendocrine prostate cancer differentiation?
    Mather RL; Wang Y; Crea F
    Epigenomics; 2018 Oct; 10(10):1259-1261. PubMed ID: 30238772
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer.
    Crea F; Venalainen E; Ci X; Cheng H; Pikor L; Parolia A; Xue H; Nur Saidy NR; Lin D; Lam W; Collins C; Wang Y
    Epigenomics; 2016 May; 8(5):721-31. PubMed ID: 27096814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression.
    Lee AR; Li Y; Xie N; Gleave ME; Cox ME; Collins CC; Dong X
    Oncotarget; 2017 Apr; 8(17):27966-27975. PubMed ID: 28427194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MYCN Transforms Prostate Epithelium to Neuroendocrine Prostate Cancer.
    Cancer Discov; 2016 Jun; 6(6):OF19. PubMed ID: 27080339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Hybridization Analysis of Long Non-coding RNAs MALAT1 and HOTAIR in Gastroenteropancreatic Neuroendocrine Neoplasms.
    Chu YH; Hardin H; Eickhoff J; Lloyd RV
    Endocr Pathol; 2019 Mar; 30(1):56-63. PubMed ID: 30600442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers.
    Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP
    Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of long non-coding RNA-HOTAIR on the cell cycle and invasiveness of prostate cancer].
    Zhu Y; Yu RK; Ji AF; Yao XL; Fang JJ; Jin XD
    Zhonghua Nan Ke Xue; 2015 Sep; 21(9):792-6. PubMed ID: 26552211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroendocrine prostate cancer: long noncoding RNAs to treat an incurable cancer - an interview with Dr Francesco Crea.
    Crea F
    Epigenomics; 2019 Oct; 11(13):1461-1462. PubMed ID: 31536382
    [No Abstract]   [Full Text] [Related]  

  • 9. Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST).
    Zhu Y; Liu C; Cui Y; Nadiminty N; Lou W; Gao AC
    Prostate; 2014 Aug; 74(11):1086-94. PubMed ID: 24819501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming.
    Mishra R; Haldar S; Placencio V; Madhav A; Rohena-Rivera K; Agarwal P; Duong F; Angara B; Tripathi M; Liu Z; Gottlieb RA; Wagner S; Posadas EM; Bhowmick NA
    J Clin Invest; 2018 Oct; 128(10):4472-4484. PubMed ID: 30047926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant expression of cystatin C in prostate cancer is associated with neuroendocrine differentiation.
    Jiborn T; Abrahamson M; Gadaleanu V; Lundwall A; Bjartell A
    BJU Int; 2006 Jul; 98(1):189-96. PubMed ID: 16831167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer.
    Ling Z; Wang X; Tao T; Zhang L; Guan H; You Z; Lu K; Zhang G; Chen S; Wu J; Qian J; Liu H; Xu B; Chen M
    J Exp Clin Cancer Res; 2017 Nov; 36(1):159. PubMed ID: 29141691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FOXA1 inhibits prostate cancer neuroendocrine differentiation.
    Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J
    Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The epigenetic and transcriptional landscape of neuroendocrine prostate cancer.
    Davies A; Zoubeidi A; Selth LA
    Endocr Relat Cancer; 2020 Feb; 27(2):R35-R50. PubMed ID: 31804971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification of MUC1 in prostate cancer metastasis and CRPC development.
    Wong N; Major P; Kapoor A; Wei F; Yan J; Aziz T; Zheng M; Jayasekera D; Cutz JC; Chow MJ; Tang D
    Oncotarget; 2016 Dec; 7(50):83115-83133. PubMed ID: 27825118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population.
    Taheri M; Habibi M; Noroozi R; Rakhshan A; Sarrafzadeh S; Sayad A; Omrani MD; Ghafouri-Fard S
    Gene; 2017 May; 613():20-24. PubMed ID: 28259691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Long non-coding RNAs in prostate cancer: An update].
    Wu PG; Zhang YX
    Zhonghua Nan Ke Xue; 2018 Aug; 24(8):735-739. PubMed ID: 30173435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression.
    Zhang Y; Pitchiaya S; Cieślik M; Niknafs YS; Tien JC; Hosono Y; Iyer MK; Yazdani S; Subramaniam S; Shukla SK; Jiang X; Wang L; Liu TY; Uhl M; Gawronski AR; Qiao Y; Xiao L; Dhanasekaran SM; Juckette KM; Kunju LP; Cao X; Patel U; Batish M; Shukla GC; Paulsen MT; Ljungman M; Jiang H; Mehra R; Backofen R; Sahinalp CS; Freier SM; Watt AT; Guo S; Wei JT; Feng FY; Malik R; Chinnaiyan AM
    Nat Genet; 2018 Jun; 50(6):814-824. PubMed ID: 29808028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperactive mTOR induces neuroendocrine differentiation in prostate cancer cell with concurrent up-regulation of IRF1.
    Kanayama M; Hayano T; Koebis M; Maeda T; Tabe Y; Horie S; Aiba A
    Prostate; 2017 Nov; 77(15):1489-1498. PubMed ID: 28905415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.