These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30238967)
1. Neurodevelopmental phenotype caused by a de novo PTPN4 single nucleotide variant disrupting protein localization in neuronal dendritic spines. Szczałuba K; Chmielewska JJ; Sokolowska O; Rydzanicz M; Szymańska K; Feleszko W; Włodarski P; Biernacka A; Murcia Pienkowski V; Walczak A; Bargeł E; Królewczyk K; Nowacka A; Stawiński P; Nowis D; Dziembowska M; Płoski R Clin Genet; 2018 Dec; 94(6):581-585. PubMed ID: 30238967 [TBL] [Abstract][Full Text] [Related]
2. Loss of PTPN4 activates STAT3 to promote the tumor growth in rectal cancer. Zhang BD; Li YR; Ding LD; Wang YY; Liu HY; Jia BQ Cancer Sci; 2019 Jul; 110(7):2258-2272. PubMed ID: 31025789 [TBL] [Abstract][Full Text] [Related]
3. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype. Williamson SL; Ellaway CJ; Peters GB; Pelka GJ; Tam PP; Christodoulou J Eur J Hum Genet; 2015 Sep; 23(9):1171-5. PubMed ID: 25424712 [TBL] [Abstract][Full Text] [Related]
4. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ. Maisonneuve P; Caillet-Saguy C; Vaney MC; Bibi-Zainab E; Sawyer K; Raynal B; Haouz A; Delepierre M; Lafon M; Cordier F; Wolff N J Biol Chem; 2016 Aug; 291(32):16699-708. PubMed ID: 27246854 [TBL] [Abstract][Full Text] [Related]
5. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. Bauler TJ; Hendriks WJ; King PD PLoS One; 2008; 3(12):e4014. PubMed ID: 19107198 [TBL] [Abstract][Full Text] [Related]
6. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Nishiyama J Psychiatry Clin Neurosci; 2019 Sep; 73(9):541-550. PubMed ID: 31215705 [TBL] [Abstract][Full Text] [Related]
7. E3 Ubiquitin Ligase MARCH8 Promotes Pancreatic Cancer Growth and Metastasis by Activating STAT3 via Degradation of PTPN4. Chen C; Wang Y; Zhao Q; Li GD; Wang YH; Xu LC; Huang HZ; Song G; Li WT; He XH Pancreas; 2023 Apr; 52(4):e224-e234. PubMed ID: 37747937 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains. Caillet-Saguy C; Toto A; Guerois R; Maisonneuve P; di Silvio E; Sawyer K; Gianni S; Wolff N Sci Rep; 2017 Aug; 7(1):7875. PubMed ID: 28801650 [TBL] [Abstract][Full Text] [Related]
9. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Young JA; Becker AM; Medeiros JJ; Shapiro VS; Wang A; Farrar JD; Quill TA; Hooft van Huijsduijnen R; van Oers NS Mol Immunol; 2008 Aug; 45(14):3756-66. PubMed ID: 18614237 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. Maisonneuve P; Caillet-Saguy C; Raynal B; Gilquin B; Chaffotte A; Pérez J; Zinn-Justin S; Delepierre M; Buc H; Cordier F; Wolff N FEBS J; 2014 Nov; 281(21):4852-65. PubMed ID: 25158884 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA-375 is a therapeutic target for castration-resistant prostate cancer through the PTPN4/STAT3 axis. Gan J; Liu S; Zhang Y; He L; Bai L; Liao R; Zhao J; Guo M; Jiang W; Li J; Li Q; Mu G; Wu Y; Wang X; Zhang X; Zhou D; Lv H; Wang Z; Zhang Y; Qian C; Feng M; Chen H; Meng Q; Huang X Exp Mol Med; 2022 Aug; 54(8):1290-1305. PubMed ID: 36042375 [TBL] [Abstract][Full Text] [Related]
12. Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Tang Y; Yang H; Yu J; Li Z; Xu Q; Ding B; Jia G Toxicol Appl Pharmacol; 2022 Feb; 437():115892. PubMed ID: 35085590 [TBL] [Abstract][Full Text] [Related]
13. Phosphatase PTPN4 preferentially inhibits TRIF-dependent TLR4 pathway by dephosphorylating TRAM. Huai W; Song H; Wang L; Li B; Zhao J; Han L; Gao C; Jiang G; Zhang L; Zhao W J Immunol; 2015 May; 194(9):4458-65. PubMed ID: 25825441 [TBL] [Abstract][Full Text] [Related]
14. PTPN4 negatively regulates CrkI in human cell lines. Zhou J; Wan B; Shan J; Shi H; Li Y; Huo K Cell Mol Biol Lett; 2013 Jun; 18(2):297-314. PubMed ID: 23666597 [TBL] [Abstract][Full Text] [Related]
16. Role of PTP/PTK trans activated insulin-like signalling pathway in regulation of grasshopper (Oedaleus asiaticus) development. Chang BH; Cui B; Ullah H; Li S; Hao K; Tu X; Wang G; Nong X; McNeill MR; Huang X; Zhang Z Environ Sci Pollut Res Int; 2019 Mar; 26(8):8312-8324. PubMed ID: 30706274 [TBL] [Abstract][Full Text] [Related]
17. miR-181c-5p Exacerbates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Targeting PTPN4. Ge L; Cai Y; Ying F; Liu H; Zhang D; He Y; Pang L; Yan D; Xu A; Ma H; Xia Z Oxid Med Cell Longev; 2019; 2019():1957920. PubMed ID: 31178952 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA-183 promotes migration and invasion of CD133(+)/CD326(+) lung adenocarcinoma initiating cells via PTPN4 inhibition. Zhu C; Deng X; Wu J; Zhang J; Yang H; Fu S; Zhang Y; Han Y; Zou Y; Chen Z; Lin S Tumour Biol; 2016 Aug; 37(8):11289-97. PubMed ID: 26951513 [TBL] [Abstract][Full Text] [Related]
19. De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. Vissers LELM; Kalvakuri S; de Boer E; Geuer S; Oud M; van Outersterp I; Kwint M; Witmond M; Kersten S; Polla DL; Weijers D; Begtrup A; McWalter K; Ruiz A; Gabau E; Morton JEV; Griffith C; Weiss K; Gamble C; Bartley J; Vernon HJ; Brunet K; Ruivenkamp C; Kant SG; Kruszka P; Larson A; Afenjar A; Billette de Villemeur T; Nugent K; ; Raymond FL; Venselaar H; Demurger F; Soler-Alfonso C; Li D; Bhoj E; Hayes I; Hamilton NP; Ahmad A; Fisher R; van den Born M; Willems M; Sorlin A; Delanne J; Moutton S; Christophe P; Mau-Them FT; Vitobello A; Goel H; Massingham L; Phornphutkul C; Schwab J; Keren B; Charles P; Vreeburg M; De Simone L; Hoganson G; Iascone M; Milani D; Evenepoel L; Revencu N; Ward DI; Burns K; Krantz I; Raible SE; Murrell JR; Wood K; Cho MT; van Bokhoven H; Muenke M; Kleefstra T; Bodmer R; de Brouwer APM Am J Hum Genet; 2020 Jul; 107(1):164-172. PubMed ID: 32553196 [TBL] [Abstract][Full Text] [Related]
20. A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome. Rodríguez-García ME; Cotrina-Vinagre FJ; Bellusci M; Martínez de Aragón A; Hernández-Sánchez L; Carnicero-Rodríguez P; Martín-Hernández E; Martínez-Azorín F Eur J Hum Genet; 2019 Sep; 27(9):1369-1378. PubMed ID: 31053780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]