BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30239123)

  • 1. Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis.
    Xi W; Yan G; Lang Z; Ma Y; Tan H; Zhu H; Wang Y; Li Y
    Small; 2018 Oct; 14(42):e1802204. PubMed ID: 30239123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction.
    Beglau THY; Rademacher L; Oestreich R; Janiak C
    Molecules; 2023 May; 28(11):. PubMed ID: 37298940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting.
    Kumar A; Bhattacharyya S
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41906-41915. PubMed ID: 29115827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting.
    Xuan C; Wang J; Xia W; Peng Z; Wu Z; Lei W; Xia K; Xin HL; Wang D
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26134-26142. PubMed ID: 28718291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen vacancy-rich amorphous porous NiFe(OH)
    Wang S; Ge X; Lv C; Hu C; Guan H; Wu J; Wang Z; Yang X; Shi Y; Song J; Zhang Z; Watanabe A; Cai J
    Nanoscale; 2020 May; 12(17):9557-9568. PubMed ID: 32315004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au Promoted Nickel-Iron Layered Double Hydroxide Nanoarrays: A Modular Catalyst Enabling High-Performance Oxygen Evolution.
    Zhu W; Liu L; Yue Z; Zhang W; Yue X; Wang J; Yu S; Wang L; Wang J
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19807-19814. PubMed ID: 28534609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction.
    Shen Y; Guo SG; Du F; Yuan XB; Zhang Y; Hu J; Shen Q; Luo W; Alsaedi A; Hayat T; Wen G; Li GL; Zhou Y; Zou Z
    Nanoscale; 2019 Jun; 11(24):11765-11773. PubMed ID: 31184359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution.
    Ma Y; Chu J; Li Z; Rakov D; Han X; Du Y; Song B; Xu P
    Small; 2018 Dec; 14(52):e1803783. PubMed ID: 30468561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen Disturbance Awakening the Intrinsic Activity of Nickel Phosphide for Boosted Hydrogen Evolution Reaction.
    Yang C; Wang Z; Li Z; Pan Y; Jiang L; Li C; Wang C; Sun Q
    ChemSusChem; 2022 Aug; 15(16):e202200072. PubMed ID: 35588238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable growth of Fe-doped NiS
    Zhong M; Song N; Li C; Wang C; Chen W; Lu X
    J Colloid Interface Sci; 2022 May; 614():556-565. PubMed ID: 35121514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-Directed Growth of Bimetallic Prussian Blue-Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction.
    Cao LM; Hu YW; Zhong DC; Lu TB
    ChemSusChem; 2018 Nov; 11(21):3708-3713. PubMed ID: 30179309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porphyrinic Metal-Organic Framework-Templated Fe-Ni-P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution.
    Fang X; Jiao L; Zhang R; Jiang HL
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23852-23858. PubMed ID: 28653833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction.
    Ma F; Wu Q; Liu M; Zheng L; Tong F; Wang Z; Wang P; Liu Y; Cheng H; Dai Y; Zheng Z; Fan Y; Huang B
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5142-5152. PubMed ID: 33480252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron and Nickel Mixed Oxides Derived From Ni
    Xie Z; Zhang C; He X; Liang Y; Meng D; Wang J; Liang P; Zhang Z
    Front Chem; 2019; 7():539. PubMed ID: 31428599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Induced Formation of Ni
    Wang Z; Wang S; Ma L; Guo Y; Sun J; Zhang N; Jiang R
    Small; 2021 Feb; 17(6):e2006770. PubMed ID: 33470529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution.
    Read CG; Callejas JF; Holder CF; Schaak RE
    ACS Appl Mater Interfaces; 2016 May; 8(20):12798-803. PubMed ID: 27156388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays.
    Zhou T; Cao Z; Zhang P; Ma H; Gao Z; Wang H; Lu Y; He J; Zhao Y
    Sci Rep; 2017 Apr; 7():46154. PubMed ID: 28383065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting.
    Wei B; Xu G; Hei J; Zhang L; Huang T; Wang Q
    J Colloid Interface Sci; 2021 Nov; 602():619-626. PubMed ID: 34147752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Superhydrophilic/Superaerophobic Ni(OH)
    Chen K; Qian J; Xu W; Li TT
    Inorg Chem; 2024 Jan; 63(1):642-652. PubMed ID: 38131603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating Electron Redistribution in Ni
    Liu X; Yu Q; Qu X; Wang X; Chi J; Wang L
    Adv Mater; 2024 Jan; 36(1):e2307395. PubMed ID: 37740701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.