BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30239187)

  • 1. Electrochemical Oxidation of Atrazine and Clothianidin on Bi-doped SnO
    Gayen P; Chen C; Abiade JT; Chaplin BP
    Environ Sci Technol; 2018 Nov; 52(21):12675-12684. PubMed ID: 30239187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and electrochemical treatment application of Ti/Sb-SnO
    Guo D; Guo Y; Huang Y; Chen Y; Dong X; Chen H; Li S
    Chemosphere; 2021 Feb; 265():129126. PubMed ID: 33288288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co/Sm-modified Ti/PbO
    Chen S; He P; Wang X; Xiao F; Zhou P; He Q; Jia L; Dong F; Zhang H; Jia B; Liu H; Tang B
    Chemosphere; 2021 Apr; 268():128799. PubMed ID: 33187658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes.
    Komtchou S; Dirany A; Drogui P; Robert D; Lafrance P
    Water Res; 2017 Nov; 125():91-103. PubMed ID: 28837868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes.
    Guo L; Jing Y; Chaplin BP
    Environ Sci Technol; 2016 Feb; 50(3):1428-36. PubMed ID: 26735740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic Reduction of Nitrate Using Magnéli Phase TiO
    Gayen P; Spataro J; Avasarala S; Ali AM; Cerrato JM; Chaplin BP
    Environ Sci Technol; 2018 Aug; 52(16):9370-9379. PubMed ID: 30039962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes.
    Misal SN; Lin MH; Mehraeen S; Chaplin BP
    J Hazard Mater; 2020 Feb; 384():121420. PubMed ID: 31685319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO
    Trellu C; Coetsier C; Rouch JC; Esmilaire R; Rivallin M; Cretin M; Causserand C
    Water Res; 2018 Mar; 131():310-319. PubMed ID: 29306202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide.
    Shi H; Wang Y; Li C; Pierce R; Gao S; Huang Q
    Environ Sci Technol; 2019 Dec; 53(24):14528-14537. PubMed ID: 31730354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe@Fe
    Ding X; Wang S; Shen W; Mu Y; Wang L; Chen H; Zhang L
    Water Res; 2017 Apr; 112():9-18. PubMed ID: 28110246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorinated Byproduct Formation during the Electrochemical Advanced Oxidation Process at Magnéli Phase Ti
    Lin MH; Bulman DM; Remucal CK; Chaplin BP
    Environ Sci Technol; 2020 Oct; 54(19):12673-12683. PubMed ID: 32841010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Adsorption and Electrochemical Reduction of N-Nitrosodimethylamine Using Carbon-Ti
    Almassi S; Li Z; Xu W; Pu C; Zeng T; Chaplin BP
    Environ Sci Technol; 2019 Jan; 53(2):928-937. PubMed ID: 30547581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface engineering strategy of a Ti
    Li W; Xiao R; Xu J; Lin H; Yang K; Li W; He K; Tang L; Chen J; Wu Y; Lv S
    Water Res; 2022 Jun; 216():118287. PubMed ID: 35334338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect.
    Kumar A; Barbhuiya NH; Singh SP
    Chemosphere; 2022 Nov; 307(Pt 2):135878. PubMed ID: 35932919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a permeable SnO
    Yang C; Fan Y; Shang S; Li P; Li XY
    Environ Int; 2021 Dec; 157():106827. PubMed ID: 34418849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.
    Song H; Yan L; Ma J; Jiang J; Cai G; Zhang W; Zhang Z; Zhang J; Yang T
    Water Res; 2017 Jun; 116():182-193. PubMed ID: 28340416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors.
    Bu L; Zhu S; Zhou S
    Chemosphere; 2018 Mar; 195():236-244. PubMed ID: 29268181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation.
    Yang K; Feng X; Lin H; Xu J; Yang C; Du J; Cheng D; Lv S; Yang Z
    J Hazard Mater; 2022 Feb; 423(Pt B):127239. PubMed ID: 34844357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation pathways of atrazine by electrochemical oxidation at different current densities: Identifications from compound-specific isotope analysis and DFT calculation.
    Liang E; Huang T; Li J; Wang T
    Environ Pollut; 2023 Sep; 332():121987. PubMed ID: 37301451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical degradation of atrazine by BDD anode: Evidence from compound-specific stable isotope analysis and DFT simulations.
    Wang T; Huang T; Jiang H; Ma R
    Chemosphere; 2021 Jun; 273():129754. PubMed ID: 33524760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.