These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30239189)
1. Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology. Keshavarz M; Tan B; Venkatakrishnan K ACS Appl Mater Interfaces; 2018 Oct; 10(41):34886-34904. PubMed ID: 30239189 [TBL] [Abstract][Full Text] [Related]
2. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Haldavnekar R; Venkatakrishnan K; Tan B Nat Commun; 2018 Aug; 9(1):3065. PubMed ID: 30076296 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413 [TBL] [Abstract][Full Text] [Related]
4. Toward Universal SERS Detection of Disease Signaling Bioanalytes Using 3D Self-Assembled Nonplasmonic near-Quantum-Scale Silicon Probe. Powell JA; Venkatakrishnan K; Tan B ACS Appl Mater Interfaces; 2017 Nov; 9(46):40127-40142. PubMed ID: 29083860 [TBL] [Abstract][Full Text] [Related]
5. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection. Tan X; Melkersson J; Wu S; Wang L; Zhang J Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682 [TBL] [Abstract][Full Text] [Related]
6. SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts. Chowdhury AKMRH; Tan B; Venkatakrishnan K ACS Appl Mater Interfaces; 2018 Oct; 10(42):35715-35733. PubMed ID: 30264558 [TBL] [Abstract][Full Text] [Related]
7. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering. Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots. Sun J; Liu F; Yu W; Jiang Q; Hu J; Liu Y; Wang F; Liu X Nanoscale; 2019 Mar; 11(11):5014-5020. PubMed ID: 30839981 [TBL] [Abstract][Full Text] [Related]
9. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection. Liu S; Meng S; Li Y; Dong N; Wei Y; Li Y; Liu D; You T ACS Sens; 2024 Jun; 9(6):3377-3386. PubMed ID: 38783424 [TBL] [Abstract][Full Text] [Related]
10. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates. Wang T; Zhang Z; Liao F; Cai Q; Li Y; Lee ST; Shao M Sci Rep; 2014 Feb; 4():4052. PubMed ID: 24514430 [TBL] [Abstract][Full Text] [Related]
11. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering. Zhu L; Meng Z; Hu S; Zhao T; Zhao B ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659 [TBL] [Abstract][Full Text] [Related]
12. Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression. Ganesh S; Venkatakrishnan K; Tan B Nat Commun; 2020 Feb; 11(1):1135. PubMed ID: 32111825 [TBL] [Abstract][Full Text] [Related]
13. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302 [TBL] [Abstract][Full Text] [Related]
14. Wrinkled metal based quantum sensor for In vitro cancer diagnosis. Ganesan S; Venkatakrishnan K; Tan B Biosens Bioelectron; 2020 Mar; 151():111967. PubMed ID: 31999577 [TBL] [Abstract][Full Text] [Related]
15. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Liu Y; Ma H; Han XX; Zhao B Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260 [TBL] [Abstract][Full Text] [Related]
16. Preparation of SiO Song D; Wang T; Zhuang L Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570474 [TBL] [Abstract][Full Text] [Related]
17. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers. Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354 [TBL] [Abstract][Full Text] [Related]
18. Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules. Almohammed S; Zhang F; Rodriguez BJ; Rice JH J Phys Chem Lett; 2019 Apr; 10(8):1878-1887. PubMed ID: 30925050 [TBL] [Abstract][Full Text] [Related]
19. Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO Song G; Sun H; Chen J; Chen Z; Liu B; Liu Z; Cong S; Zhao Z Anal Chem; 2022 Mar; 94(12):5048-5054. PubMed ID: 35297614 [TBL] [Abstract][Full Text] [Related]
20. 1T' Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels. Tao L; Chen K; Chen Z; Cong C; Qiu C; Chen J; Wang X; Chen H; Yu T; Xie W; Deng S; Xu JB J Am Chem Soc; 2018 Jul; 140(28):8696-8704. PubMed ID: 29927248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]