These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3023927)

  • 1. A DNA fragment containing the upstream activator sequence determines nucleosome positioning of the transcriptionally repressed PHO5 gene of Saccharomyces cerevisiae.
    Bergman LW
    Mol Cell Biol; 1986 Jul; 6(7):2298-304. PubMed ID: 3023927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin.
    Thoma F
    J Mol Biol; 1986 Jul; 190(2):177-90. PubMed ID: 3540310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast.
    Almer A; Hörz W
    EMBO J; 1986 Oct; 5(10):2681-7. PubMed ID: 3023055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast alpha 2 repressor positions nucleosomes in TRP1/ARS1 chromatin.
    Roth SY; Dean A; Simpson RT
    Mol Cell Biol; 1990 May; 10(5):2247-60. PubMed ID: 2183026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosomes unfold completely at a transcriptionally active promoter.
    Boeger H; Griesenbeck J; Strattan JS; Kornberg RD
    Mol Cell; 2003 Jun; 11(6):1587-98. PubMed ID: 12820971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding-end-labelling. A method to avoid artifacts in nucleosome positioning.
    Pérez-Ortín JE; Estruch F; Matallana E; Franco L
    FEBS Lett; 1986 Nov; 208(1):31-3. PubMed ID: 3021537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial plasmid pBR322 sequences serve as upstream activating sequences in Saccharomyces cerevisiae.
    Sidhu RS; Bollon AP
    Yeast; 1990; 6(3):221-9. PubMed ID: 2190432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae.
    Han M; Kim UJ; Kayne P; Grunstein M
    EMBO J; 1988 Jul; 7(7):2221-8. PubMed ID: 3046934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide.
    Arima K; Oshima T; Kubota I; Nakamura N; Mizunaga T; Toh-e A
    Nucleic Acids Res; 1983 Mar; 11(6):1657-72. PubMed ID: 6300772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Insertion of (dA-dT)n sequences into the regulatory region of the pho5 gene inhibits its expression].
    Sidorova IuM; Kistanova EN; Chernov BK; El'darov MA; Skriabin KG; Nikiforov VG; Mirkin SM
    Mol Biol (Mosk); 1990; 24(1):163-72. PubMed ID: 2190080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYC1-lacZ gene fusion.
    Sengstag C; Hinnen A
    Gene; 1988 Jul; 67(2):223-8. PubMed ID: 3139496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of nucleosome positioning, remodeling, histone acetylation, and transcriptional activation on the PHO5 promoter.
    Terrell AR; Wongwisansri S; Pilon JL; Laybourn PJ
    J Biol Chem; 2002 Aug; 277(34):31038-47. PubMed ID: 12060664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.
    Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A
    Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step gene replacement in yeast by cotransformation.
    Rudolph H; Koenig-Rauseo I; Hinnen A
    Gene; 1985; 36(1-2):87-95. PubMed ID: 2998940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.