BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3023941)

  • 1. Saccharomyces cerevisiae PHO5 promoter region: location and function of the upstream activation site.
    Nakao J; Miyanohara A; Toh-e A; Matsubara K
    Mol Cell Biol; 1986 Jul; 6(7):2613-23. PubMed ID: 3023941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection.
    Rudolph H; Hinnen A
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1340-4. PubMed ID: 2881299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter.
    Bitter GA; Chang KK; Egan KM
    Mol Gen Genet; 1991 Dec; 231(1):22-32. PubMed ID: 1753943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome loss activates yeast downstream promoters in vivo.
    Han M; Grunstein M
    Cell; 1988 Dec; 55(6):1137-45. PubMed ID: 2849508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae.
    Nishizawa M; Araki R; Teranishi Y
    Mol Cell Biol; 1989 Feb; 9(2):442-51. PubMed ID: 2651900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation by upstream activator sequences requires distinct interactions with downstream elements in the yeast TRP1 promoter.
    Mellor J; Midgely C; Kingsman AJ; Kingsman SM; Kim S
    Mol Gen Genet; 1991 Feb; 225(2):217-24. PubMed ID: 2005863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element.
    Liao XB; Clare JJ; Farabaugh PJ
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8520-4. PubMed ID: 2825192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box.
    Siddiqui AH; Brandriss MC
    Mol Cell Biol; 1988 Nov; 8(11):4634-41. PubMed ID: 3062363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae.
    Ogawa N; Saitoh H; Miura K; Magbanua JP; Bun-ya M; Harashima S; Oshima Y
    Mol Gen Genet; 1995 Dec; 249(4):406-16. PubMed ID: 8552045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae.
    Han M; Kim UJ; Kayne P; Grunstein M
    EMBO J; 1988 Jul; 7(7):2221-8. PubMed ID: 3046934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The upstream activating sequence for L-leucine gene regulation in Saccharomyces cerevisiae.
    Tu H; Casadaban MJ
    Nucleic Acids Res; 1990 Jul; 18(13):3923-31. PubMed ID: 2197599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYC1-lacZ gene fusion.
    Sengstag C; Hinnen A
    Gene; 1988 Jul; 67(2):223-8. PubMed ID: 3139496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae.
    Griggs DW; Johnston M
    Mol Cell Biol; 1993 Aug; 13(8):4999-5009. PubMed ID: 8393142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a DNA segment that is necessary and sufficient for alpha-specific gene control in Saccharomyces cerevisiae: implications for regulation of alpha-specific and a-specific genes.
    Jarvis EE; Hagen DC; Sprague GF
    Mol Cell Biol; 1988 Jan; 8(1):309-20. PubMed ID: 3275872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions.
    Vogel K; Hörz W; Hinnen A
    Mol Cell Biol; 1989 May; 9(5):2050-7. PubMed ID: 2664469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancer and silencerlike sites within the transcribed portion of a Ty2 transposable element of Saccharomyces cerevisiae.
    Farabaugh P; Liao XB; Belcourt M; Zhao H; Kapakos J; Clare J
    Mol Cell Biol; 1989 Nov; 9(11):4824-34. PubMed ID: 2481227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.