These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30239542)

  • 1. Root-growth of boron nitride nanotubes: experiments and ab initio simulations.
    Santra B; Ko HY; Yeh YW; Martelli F; Kaganovich I; Raitses Y; Car R
    Nanoscale; 2018 Dec; 10(47):22223-22230. PubMed ID: 30239542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.
    Yeh YW; Raitses Y; Koel BE; Yao N
    Sci Rep; 2017 Jun; 7(1):3075. PubMed ID: 28596538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique.
    Arenal R; Stephan O; Cochon JL; Loiseau A
    J Am Chem Soc; 2007 Dec; 129(51):16183-9. PubMed ID: 18052251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the gas composition for the growth of BNNTs using a thermodynamic approach.
    Khrabry A; Kaganovich ID; Yatom S; Vekselman V; Radić-Perić J; Rodman J; Raitses Y
    Phys Chem Chem Phys; 2019 Jun; 21(24):13268-13286. PubMed ID: 31183487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Catalytic Ternary Compounds for Efficient Synthesis of High-Quality Boron Nitride Nanotubes.
    Wang N; Ding L; Li T; Zhang K; Wu L; Zhou Z; He Q; He X; Wang X; Hu Y; Ding F; Zhang J; Yao Y
    Small; 2023 Apr; 19(14):e2206933. PubMed ID: 36631285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual growth mode of boron nitride nanotubes in high temperature pressure laser ablation.
    Kim JH; Cho H; Pham TV; Hwang JH; Ahn S; Jang SG; Lee H; Park C; Kim CS; Kim MJ
    Sci Rep; 2019 Oct; 9(1):15674. PubMed ID: 31666654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of boron nitride nanotubes from magnesium diboride catalysts.
    E S; Wu L; Li C; Zhu Z; Long X; Geng R; Zhang J; Li Z; Lu W; Yao Y
    Nanoscale; 2018 Aug; 10(29):13895-13901. PubMed ID: 29999076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.
    Nithya JS; Pandurangan A
    J Nanosci Nanotechnol; 2012 May; 12(5):3831-7. PubMed ID: 22852313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous formation of boron nitride nanotube fibers by boron impurity reduction in laser ablation of ammonia borane.
    Bae DS; Kim C; Lee H; Khater O; Kim KS; Shin H; Lee KH; Kim MJ
    Nano Converg; 2022 May; 9(1):20. PubMed ID: 35552898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of carbohydrate modified boron nitride nanotubes with living cells.
    Emanet M; Şen Ö; Çobandede Z; Çulha M
    Colloids Surf B Biointerfaces; 2015 Oct; 134():440-6. PubMed ID: 26222410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers.
    Thomas M; Enciso M; Hilder TA
    J Phys Chem B; 2015 Apr; 119(15):4929-36. PubMed ID: 25800058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.
    Ferreira TH; Miranda MC; Rocha Z; Leal AS; Gomes DA; Sousa EMB
    Nanomaterials (Basel); 2017 Apr; 7(4):. PubMed ID: 28417903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes.
    Santosh M; Maiti PK; Sood AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5425-30. PubMed ID: 19928237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials.
    Li C; Long X; E S; Zhang Q; Li T; Wu J; Yao Y
    Nanoscale; 2019 Jun; 11(24):11457-11463. PubMed ID: 31188376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Quantum-Mechanical Partial Charges in Arbitrarily Long Boron Nitride Nanotubes to Accurately Simulate Nanoscale Water Transport.
    Kumar S; Govind Rajan A
    J Chem Theory Comput; 2024 Apr; 20(8):3298-3307. PubMed ID: 38588340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of boron nitride nanotubes from unprocessed colemanite.
    Kalay S; Yilmaz Z; Culha M
    Beilstein J Nanotechnol; 2013; 4():843-51. PubMed ID: 24367753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies.
    Kim KS; Kingston CT; Hrdina A; Jakubinek MB; Guan J; Plunkett M; Simard B
    ACS Nano; 2014 Jun; 8(6):6211-20. PubMed ID: 24807071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-charge effects on the electro-orientation of insulating boron-nitride nanotubes in aqueous suspension.
    Cetindag S; Tiwari B; Zhang D; Yap YK; Kim S; Shan JW
    J Colloid Interface Sci; 2017 Nov; 505():1185-1192. PubMed ID: 28732394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes.
    Zhao Y; Wu X; Yang J; Zeng XC
    Phys Chem Chem Phys; 2011 Jun; 13(24):11766-72. PubMed ID: 21603684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of boron nitride nanotubes by boron ink annealing.
    Li LH; Chen Y; Glushenkov AM
    Nanotechnology; 2010 Mar; 21(10):105601. PubMed ID: 20154372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.