BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30239680)

  • 1. An end-to-end deep learning architecture for extracting protein-protein interactions affected by genetic mutations.
    Tran T; Kavuluru R
    Database (Oxford); 2018 Jan; 2018():1-13. PubMed ID: 30239680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine.
    Islamaj Dogan R; Kim S; Chatr-Aryamontri A; Wei CH; Comeau DC; Antunes R; Matos S; Chen Q; Elangovan A; Panyam NC; Verspoor K; Liu H; Wang Y; Liu Z; Altinel B; Hüsünbeyi ZM; Özgür A; Fergadis A; Wang CK; Dai HJ; Tran T; Kavuluru R; Luo L; Steppi A; Zhang J; Qu J; Lu Z
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30689846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical bi-directional attention-based RNNs for supporting document classification on protein-protein interactions affected by genetic mutations.
    Fergadis A; Baziotis C; Pappas D; Papageorgiou H; Potamianos A
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30137284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting chemical-protein relations with ensembles of SVM and deep learning models.
    Peng Y; Rios A; Kavuluru R; Lu Z
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30020437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Document triage for identifying protein-protein interactions affected by mutations: a neural network ensemble approach.
    Luo L; Yang Z; Lin H; Wang J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30295718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BioCreative VI Precision Medicine Track system performance is constrained by entity recognition and variations in corpus characteristics.
    Chen Q; Panyam NC; Elangovan A; Verspoor K
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of chemical-protein interactions from the literature using neural networks and narrow instance representation.
    Antunes R; Matos S
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31622463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging prior knowledge for protein-protein interaction extraction with memory network.
    Zhou H; Liu Z; Ning S; Yang Y; Lang C; Lin Y; Ma K
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30010731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entity recognition in the biomedical domain using a hybrid approach.
    Basaldella M; Furrer L; Tasso C; Rinaldi F
    J Biomed Semantics; 2017 Nov; 8(1):51. PubMed ID: 29122011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning of mutation-gene-drug relations from the literature.
    Lee K; Kim B; Choi Y; Kim S; Shin W; Lee S; Park S; Kim S; Tan AC; Kang J
    BMC Bioinformatics; 2018 Jan; 19(1):21. PubMed ID: 29368597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical-gene relation extraction using recursive neural network.
    Lim S; Kang J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29961818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.
    Li H; Yang M; Chen Q; Tang B; Wang X; Yan J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):60. PubMed ID: 30066652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triage of documents containing protein interactions affected by mutations using an NLP based machine learning approach.
    Qu J; Steppi A; Zhong D; Hao J; Wang J; Lung PY; Zhao T; He Z; Zhang J
    BMC Genomics; 2020 Nov; 21(1):773. PubMed ID: 33167858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting chemical-protein relations using attention-based neural networks.
    Liu S; Shen F; Komandur Elayavilli R; Wang Y; Rastegar-Mojarad M; Chaudhary V; Liu H
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30295724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks.
    Lu H; Li L; He X; Liu Y; Zhou A
    Comput Methods Programs Biomed; 2019 Jul; 176():61-68. PubMed ID: 31200912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition.
    Yoon W; So CH; Lee J; Kang J
    BMC Bioinformatics; 2019 May; 20(Suppl 10):249. PubMed ID: 31138109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning.
    Chen T; Wu M; Li H
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31800044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction.
    Le HQ; Tran MV; Dang TH; Ha QT; Collier N
    Database (Oxford); 2016 Jul; 2016():. PubMed ID: 27630201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.