These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30239680)

  • 21. HITSZ_CDR: an end-to-end chemical and disease relation extraction system for BioCreative V.
    Li H; Tang B; Chen Q; Chen K; Wang X; Wang B; Wang Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27270713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Full-text chemical identification with improved generalizability and tagging consistency.
    Kim H; Sung M; Yoon W; Park S; Kang J
    Database (Oxford); 2022 Sep; 2022():. PubMed ID: 36170114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long short-term memory RNN for biomedical named entity recognition.
    Lyu C; Chen B; Ren Y; Ji D
    BMC Bioinformatics; 2017 Oct; 18(1):462. PubMed ID: 29084508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task.
    Wei CH; Peng Y; Leaman R; Davis AP; Mattingly CJ; Li J; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 26994911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extraction of drug-drug interaction using neural embedding.
    Hou WJ; Ceesay B
    J Bioinform Comput Biol; 2018 Dec; 16(6):1840027. PubMed ID: 30567477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A crowdsourcing workflow for extracting chemical-induced disease relations from free text.
    Li TS; Bravo À; Furlong LI; Good BM; Su AI
    Database (Oxford); 2016; 2016():. PubMed ID: 27087308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CD-REST: a system for extracting chemical-induced disease relation in literature.
    Xu J; Wu Y; Zhang Y; Wang J; Lee HJ; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27016700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge.
    Krallinger M; Morgan A; Smith L; Leitner F; Tanabe L; Wilbur J; Hirschman L; Valencia A
    Genome Biol; 2008; 9 Suppl 2(Suppl 2):S1. PubMed ID: 18834487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic query generation using word embeddings for retrieving passages describing experimental methods.
    Aydın F; Hüsünbeyi ZM; Özgür A
    Database (Oxford); 2017; 2017():. PubMed ID: 28077568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical-induced disease relation extraction via attention-based distant supervision.
    Gu J; Sun F; Qian L; Zhou G
    BMC Bioinformatics; 2019 Jul; 20(1):403. PubMed ID: 31331263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequence labeling framework for extracting drug-protein relations from biomedical literature.
    Luo L; Lai PT; Wei CH; Lu Z
    Database (Oxford); 2022 Jul; 2022():. PubMed ID: 35856889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extraction of CYP chemical interactions from biomedical literature using natural language processing methods.
    Jiao D; Wild DJ
    J Chem Inf Model; 2009 Feb; 49(2):263-9. PubMed ID: 19434828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multichannel Convolutional Neural Network for Biological Relation Extraction.
    Quan C; Hua L; Sun X; Bai W
    Biomed Res Int; 2016; 2016():1850404. PubMed ID: 28053977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A neural network approach to chemical and gene/protein entity recognition in patents.
    Luo L; Yang Z; Yang P; Zhang Y; Wang L; Wang J; Lin H
    J Cheminform; 2018 Dec; 10(1):65. PubMed ID: 30564940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPRENO: a BioC module for identifying organism terms in figure captions.
    Dai HJ; Singh O
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29873706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition.
    Jauregi Unanue I; Zare Borzeshi E; Piccardi M
    J Biomed Inform; 2017 Dec; 76():102-109. PubMed ID: 29146561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.