BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30239689)

  • 1. Implications of bipolar voltage mapping and magnetic resonance imaging resolution in biventricular scar characterization after myocardial infarction.
    López-Yunta M; León DG; Alfonso-Almazán JM; Marina-Breysse M; Quintanilla JG; Sánchez-González J; Galán-Arriola C; Cañadas-Godoy V; Enríquez-Vázquez D; Torres C; Ibáñez B; Pérez-Villacastín J; Pérez-Castellano N; Jalife J; Vázquez M; Aguado-Sierra J; Filgueiras-Rama D
    Europace; 2019 Jan; 21(1):163-174. PubMed ID: 30239689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Conduction Velocity in the Presence of Late Gadolinium Enhancement and Myocardial Wall Thinning: A Cardiac Magnetic Resonance Study in a Swine Model of Healed Left Ventricular Infarction.
    Jang J; Whitaker J; Leshem E; Ngo LH; Neisius U; Nakamori S; Pashakhanloo F; Menze B; Manning WJ; Anter E; Nezafat R
    Circ Arrhythm Electrophysiol; 2019 May; 12(5):e007175. PubMed ID: 31006313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discordance in Scar Detection Between Electroanatomical Mapping and Cardiac MRI in an Infarct Swine Model.
    Kucukseymen S; Yavin H; Barkagan M; Jang J; Shapira-Daniels A; Rodriguez J; Shim D; Pashakhanloo F; Pierce P; Botzer L; Manning WJ; Anter E; Nezafat R
    JACC Clin Electrophysiol; 2020 Oct; 6(11):1452-1464. PubMed ID: 33121675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gray blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of myocardial scar.
    Fahmy AS; Neisius U; Tsao CW; Berg S; Goddu E; Pierce P; Basha TA; Ngo L; Manning WJ; Nezafat R
    J Cardiovasc Magn Reson; 2018 Mar; 20(1):22. PubMed ID: 29562921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of myocardial injury after reperfused infarction by T1ρ cardiovascular magnetic resonance.
    Stoffers RH; Madden M; Shahid M; Contijoch F; Solomon J; Pilla JJ; Gorman JH; Gorman RC; Witschey WRT
    J Cardiovasc Magn Reson; 2017 Feb; 19(1):17. PubMed ID: 28196494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar.
    Francis R; Kellman P; Kotecha T; Baggiano A; Norrington K; Martinez-Naharro A; Nordin S; Knight DS; Rakhit RD; Lockie T; Hawkins PN; Moon JC; Hausenloy DJ; Xue H; Hansen MS; Fontana M
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):91. PubMed ID: 29162123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of late gadolinium enhancement image acquisition resolution on neural network based automatic scar segmentation.
    Hoh T; Margolis I; Weine J; Joyce T; Manka R; Weisskopf M; Cesarovic N; Fuetterer M; Kozerke S
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):101031. PubMed ID: 38431078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial structural associations with local electrograms: a study of postinfarct ventricular tachycardia pathophysiology and magnetic resonance-based noninvasive mapping.
    Sasaki T; Miller CF; Hansford R; Yang J; Caffo BS; Zviman MM; Henrikson CA; Marine JE; Spragg D; Cheng A; Tandri H; Sinha S; Kolandaivelu A; Zimmerman SL; Bluemke DA; Tomaselli GF; Berger RD; Calkins H; Halperin HR; Nazarian S
    Circ Arrhythm Electrophysiol; 2012 Dec; 5(6):1081-90. PubMed ID: 23149263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive evaluation of macroscopic and microscopic myocardial fibrosis by cardiac MR: intra-individual comparison of gadobutrol versus gadoterate meglumine.
    Rahsepar AA; Ghasemiesfe A; Suwa K; Dolan RS; Shehata ML; Korell MJ; Naresh NK; Markl M; Collins JD; Carr JC
    Eur Radiol; 2019 Aug; 29(8):4357-4367. PubMed ID: 30617490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Conduction Velocity Maps and Their Association With Scar Distribution on Magnetic Resonance Imaging in Patients With Postinfarction Ventricular Tachycardias.
    Aronis KN; Ali RL; Prakosa A; Ashikaga H; Berger RD; Hakim JB; Liang J; Tandri H; Teng F; Chrispin J; Trayanova NA
    Circ Arrhythm Electrophysiol; 2020 Apr; 13(4):e007792. PubMed ID: 32191131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography.
    Mekkaoui C; Jackowski MP; Kostis WJ; Stoeck CT; Thiagalingam A; Reese TG; Reddy VY; Ruskin JN; Kozerke S; Sosnovik DE
    J Am Heart Assoc; 2018 Feb; 7(3):. PubMed ID: 29420216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance.
    Witschey WR; Zsido GA; Koomalsingh K; Kondo N; Minakawa M; Shuto T; McGarvey JR; Levack MM; Contijoch F; Pilla JJ; Gorman JH; Gorman RC
    J Cardiovasc Magn Reson; 2012 Jun; 14(1):37. PubMed ID: 22704222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-blood late gadolinium enhancement without additional magnetization preparation.
    Holtackers RJ; Chiribiri A; Schneider T; Higgins DM; Botnar RM
    J Cardiovasc Magn Reson; 2017 Aug; 19(1):64. PubMed ID: 28835250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach.
    Rutz T; Piccini D; Coppo S; Chaptinel J; Ginami G; Vincenti G; Stuber M; Schwitter J
    Int J Cardiovasc Imaging; 2016 Dec; 32(12):1735-1744. PubMed ID: 27549804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved co-registration of ex-vivo and in-vivo cardiovascular magnetic resonance images using heart-specific flexible 3D printed acrylic scaffold combined with non-rigid registration.
    Whitaker J; Neji R; Byrne N; Puyol-Antón E; Mukherjee RK; Williams SE; Chubb H; O'Neill L; Razeghi O; Connolly A; Rhode K; Niederer S; King A; Tschabrunn C; Anter E; Nezafat R; Bishop MJ; O'Neill M; Razavi R; Roujol S
    J Cardiovasc Magn Reson; 2019 Oct; 21(1):62. PubMed ID: 31597563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of myocardial scars: electrophysiological imaging correlates in a porcine infarct model.
    Nakahara S; Vaseghi M; Ramirez RJ; Fonseca CG; Lai CK; Finn JP; Mahajan A; Boyle NG; Shivkumar K
    Heart Rhythm; 2011 Jul; 8(7):1060-7. PubMed ID: 21354335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia.
    Piers SR; Tao Q; de Riva Silva M; Siebelink HM; Schalij MJ; van der Geest RJ; Zeppenfeld K
    JACC Cardiovasc Imaging; 2014 Aug; 7(8):774-84. PubMed ID: 25051947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping.
    Bulluck H; Hammond-Haley M; Fontana M; Knight DS; Sirker A; Herrey AS; Manisty C; Kellman P; Moon JC; Hausenloy DJ
    J Cardiovasc Magn Reson; 2017 Aug; 19(1):57. PubMed ID: 28764773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging.
    van den Broek HT; Wenker S; van de Leur R; Doevendans PA; Chamuleau SAJ; van Slochteren FJ; van Es R
    J Cardiovasc Transl Res; 2019 Dec; 12(6):517-527. PubMed ID: 31338795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left ventricular scar burden specifies the potential for ventricular arrhythmogenesis: an LGE-CMR study.
    Scott PA; Rosengarten JA; Murday DC; Peebles CR; Harden SP; Curzen NP; Morgan JM
    J Cardiovasc Electrophysiol; 2013 Apr; 24(4):430-6. PubMed ID: 23210601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.