These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30239695)

  • 1. Factors Influencing Gene Family Size Variation Among Related Species in a Plant Family, Solanaceae.
    Wang P; Moore BM; Panchy NL; Meng F; Lehti-Shiu MD; Shiu SH
    Genome Biol Evol; 2018 Oct; 10(10):2596-2613. PubMed ID: 30239695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae.
    Wu M; Kostyun JL; Moyle LC
    Genome Biol Evol; 2019 Feb; 11(2):335-349. PubMed ID: 30608583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome.
    Yu J; Wang L; Guo H; Liao B; King G; Zhang X
    BMC Genomics; 2017 Mar; 18(1):257. PubMed ID: 28340563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family.
    Phukela B; Geeta R; Das S; Tandon R
    Mol Genet Genomics; 2020 May; 295(3):563-577. PubMed ID: 31912236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastid trnF pseudogenes are present in Jaltomata, the sister genus of Solanum (Solanaceae): molecular evolution of tandemly repeated structural mutations.
    Poczai P; Hyvönen J
    Gene; 2013 Nov; 530(1):143-50. PubMed ID: 23962687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem gene duplication and recombination at the AT3 locus in the Solanaceae, a gene essential for capsaicinoid biosynthesis in Capsicum.
    Egan AN; Moore S; Stellari GM; Kang BC; Jahn MM
    PLoS One; 2019; 14(1):e0210510. PubMed ID: 30673734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization and duplication modes of pseudogenes in plants.
    Mascagni F; Usai G; Cavallini A; Porceddu A
    Sci Rep; 2021 Mar; 11(1):5292. PubMed ID: 33674668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana.
    Casneuf T; De Bodt S; Raes J; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(2):R13. PubMed ID: 16507168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Evolutionary and Expression Analysis of FCS-Like Zinc finger Gene Family Yields Insights into Their Origin, Expansion and Divergence.
    Jamsheer K M; Mannully CT; Gopan N; Laxmi A
    PLoS One; 2015; 10(8):e0134328. PubMed ID: 26252898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors.
    Gao B; Chen M; Li X; Liang Y; Zhu F; Liu T; Zhang D; Wood AJ; Oliver MJ; Zhang J
    BMC Plant Biol; 2018 Oct; 18(1):256. PubMed ID: 30367626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
    Zhang PG; Huang SZ; Pin AL; Adams KL
    Mol Biol Evol; 2010 Jul; 27(7):1686-97. PubMed ID: 20185454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The birth-and-death evolution of multigene families revisited.
    Eirín-López JM; Rebordinos L; Rooney AP; Rozas J
    Genome Dyn; 2012; 7():170-96. PubMed ID: 22759819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sucrose metabolism gene families and their biological functions.
    Jiang SY; Chi YH; Wang JZ; Zhou JX; Cheng YS; Zhang BL; Ma A; Vanitha J; Ramachandran S
    Sci Rep; 2015 Nov; 5():17583. PubMed ID: 26616172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence in Enzymatic Activities in the Soybean GST Supergene Family Provides New Insight into the Evolutionary Dynamics of Whole-Genome Duplicates.
    Liu HJ; Tang ZX; Han XM; Yang ZL; Zhang FM; Yang HL; Liu YJ; Zeng QY
    Mol Biol Evol; 2015 Nov; 32(11):2844-59. PubMed ID: 26219583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families.
    Chang D; Duda TF
    Mol Biol Evol; 2012 Aug; 29(8):2019-29. PubMed ID: 22337864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid diversification of five Oryza AA genomes associated with rice adaptation.
    Zhang QJ; Zhu T; Xia EH; Shi C; Liu YL; Zhang Y; Liu Y; Jiang WK; Zhao YJ; Mao SY; Zhang LP; Huang H; Jiao JY; Xu PZ; Yao QY; Zeng FC; Yang LL; Gao J; Tao DY; Wang YJ; Bennetzen JL; Gao LZ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4954-62. PubMed ID: 25368197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinpointing genes underlying annual/perennial transitions with comparative genomics.
    Heidel AJ; Kiefer C; Coupland G; Rose LE
    BMC Genomics; 2016 Nov; 17(1):921. PubMed ID: 27846808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of nuclear receptor pseudogenes in vertebrates: how the silent tell their stories.
    Zhang ZD; Cayting P; Weinstock G; Gerstein M
    Mol Biol Evol; 2008 Jan; 25(1):131-43. PubMed ID: 18065488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The power-law distribution of gene family size is driven by the pseudogenisation rate's heterogeneity between gene families.
    Hughes T; Liberles DA
    Gene; 2008 May; 414(1-2):85-94. PubMed ID: 18378100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.