These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30239795)

  • 1. Structural insights into the mechanism of double strand break formation by Hermes, a hAT family eukaryotic DNA transposase.
    Hickman AB; Voth AR; Ewis H; Li X; Craig NL; Dyda F
    Nucleic Acids Res; 2018 Nov; 46(19):10286-10301. PubMed ID: 30239795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposition of hAT elements links transposable elements and V(D)J recombination.
    Zhou L; Mitra R; Atkinson PW; Hickman AB; Dyda F; Craig NL
    Nature; 2004 Dec; 432(7020):995-1001. PubMed ID: 15616554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposition of Mutator-like transposable elements (MULEs) resembles hAT and Transib elements and V(D)J recombination.
    Liu K; Wessler SR
    Nucleic Acids Res; 2017 Jun; 45(11):6644-6655. PubMed ID: 28482040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the proposed DSE motif form the active center in the Hermes transposase?
    Michel K; O'Brochta DA; Atkinson PW
    Gene; 2002 Oct; 298(2):141-6. PubMed ID: 12426102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of Tn5 transposase beta-loop residues affects all steps of Tn5 transposition: the role of conformational changes in Tn5 transposition.
    Steiniger M; Metzler J; Reznikoff WS
    Biochemistry; 2006 Dec; 45(51):15552-62. PubMed ID: 17176076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Characterization of Kat1: a Domesticated hAT-Transposase that Induces DNA Hairpin Formation and MAT-Switching.
    Chiruvella KK; Rajaei N; Jonna VR; Hofer A; Åström SU
    Sci Rep; 2016 Feb; 6():21671. PubMed ID: 26902909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors.
    Czyz A; Stillmock KA; Hazuda DJ; Reznikoff WS
    Biochemistry; 2007 Sep; 46(38):10776-89. PubMed ID: 17725323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate.
    Davies DR; Goryshin IY; Reznikoff WS; Rayment I
    Science; 2000 Jul; 289(5476):77-85. PubMed ID: 10884228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage.
    Claeys Bouuaert C; Chalmers R
    Nucleic Acids Res; 2010 Jan; 38(1):190-202. PubMed ID: 19858101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk between transposase subunits during cleavage of the mariner transposon.
    Claeys Bouuaert C; Walker N; Liu D; Chalmers R
    Nucleic Acids Res; 2014 May; 42(9):5799-808. PubMed ID: 24623810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural role of the flanking DNA in mariner transposon excision.
    Dornan J; Grey H; Richardson JM
    Nucleic Acids Res; 2015 Feb; 43(4):2424-32. PubMed ID: 25662605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance.
    Rubio-Cosials A; Schulz EC; Lambertsen L; Smyshlyaev G; Rojas-Cordova C; Forslund K; Karaca E; Bebel A; Bork P; Barabas O
    Cell; 2018 Mar; 173(1):208-220.e20. PubMed ID: 29551265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica.
    Hickman AB; Ewis HE; Li X; Knapp JA; Laver T; Doss AL; Tolun G; Steven AC; Grishaev A; Bax A; Atkinson PW; Craig NL; Dyda F
    Cell; 2014 Jul; 158(2):353-367. PubMed ID: 25036632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining functional regions of the IS903 transposase.
    Tavakoli NP; DeVost J; Derbyshire KM
    J Mol Biol; 1997 Dec; 274(4):491-504. PubMed ID: 9417930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
    Blundell-Hunter G; Tellier M; Chalmers R
    Nucleic Acids Res; 2018 Oct; 46(18):9637-9646. PubMed ID: 30184164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition.
    Kosek D; Hickman AB; Ghirlando R; He S; Dyda F
    EMBO J; 2021 Jan; 40(1):e105666. PubMed ID: 33006208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tn5 as a model for understanding DNA transposition.
    Reznikoff WS
    Mol Microbiol; 2003 Mar; 47(5):1199-206. PubMed ID: 12603728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-flipping dynamics in a DNA hairpin processing reaction.
    Bischerour J; Chalmers R
    Nucleic Acids Res; 2007; 35(8):2584-95. PubMed ID: 17412704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple topological filter in a eukaryotic transposon as a mechanism to suppress genome instability.
    Claeys Bouuaert C; Liu D; Chalmers R
    Mol Cell Biol; 2011 Jan; 31(2):317-27. PubMed ID: 21041479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P Transposable Elements in Drosophila and other Eukaryotic Organisms.
    Majumdar S; Rio DC
    Microbiol Spectr; 2015 Apr; 3(2):MDNA3-0004-2014. PubMed ID: 26104714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.