These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30239876)
1. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643 [TBL] [Abstract][Full Text] [Related]
3. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
4. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317 [TBL] [Abstract][Full Text] [Related]
5. Structure of Csx1-cOA Molina R; Stella S; Feng M; Sofos N; Jauniskis V; Pozdnyakova I; López-Méndez B; She Q; Montoya G Nat Commun; 2019 Sep; 10(1):4302. PubMed ID: 31541109 [TBL] [Abstract][Full Text] [Related]
6. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Kazlauskiene M; Kostiuk G; Venclovas Č; Tamulaitis G; Siksnys V Science; 2017 Aug; 357(6351):605-609. PubMed ID: 28663439 [TBL] [Abstract][Full Text] [Related]
7. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012 [TBL] [Abstract][Full Text] [Related]
8. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF Elife; 2020 Jun; 9():. PubMed ID: 32597755 [TBL] [Abstract][Full Text] [Related]
9. Cmr3 regulates the suppression on cyclic oligoadenylate synthesis by tag complementarity in a Type III-B CRISPR-Cas system. Guo T; Zheng F; Zeng Z; Yang Y; Li Q; She Q; Han W RNA Biol; 2019 Oct; 16(10):1513-1520. PubMed ID: 31298604 [TBL] [Abstract][Full Text] [Related]
10. Second Messenger cA Jia N; Jones R; Sukenick G; Patel DJ Mol Cell; 2019 Sep; 75(5):933-943.e6. PubMed ID: 31326272 [TBL] [Abstract][Full Text] [Related]
11. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454 [TBL] [Abstract][Full Text] [Related]
12. A Membrane-Associated DHH-DHHA1 Nuclease Degrades Type III CRISPR Second Messenger. Zhao R; Yang Y; Zheng F; Zeng Z; Feng W; Jin X; Wang J; Yang K; Liang YX; She Q; Han W Cell Rep; 2020 Sep; 32(11):108133. PubMed ID: 32937129 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein. Bhoobalan-Chitty Y; Johansen TB; Di Cianni N; Peng X Cell; 2019 Oct; 179(2):448-458.e11. PubMed ID: 31564454 [TBL] [Abstract][Full Text] [Related]
14. The Card1 nuclease provides defence during type III CRISPR immunity. Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211 [TBL] [Abstract][Full Text] [Related]
15. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma. Koonin EV; Makarova KS ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734 [TBL] [Abstract][Full Text] [Related]
16. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143 [TBL] [Abstract][Full Text] [Related]
17. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity. Foster K; Grüschow S; Bailey S; White MF; Terns MP Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888 [TBL] [Abstract][Full Text] [Related]
19. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291 [TBL] [Abstract][Full Text] [Related]