These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30240155)

  • 1. A Large-Sized Reduced Graphene Oxide with Low Charge-Transfer Resistance as a High-Performance Electrode for a Nonflammable High-Temperature Stable Ionic-Liquid-Based Supercapacitor.
    Ma L; Gao Q; Tian W; Zhang Q; Xiao H; Li Z; Zhang H; Tian X
    ChemSusChem; 2018 Dec; 11(23):4026-4032. PubMed ID: 30240155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
    Guo N; Li M; Wang Y; Sun X; Wang F; Yang R
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33626-33634. PubMed ID: 27960404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-Doped Graphene for Ionic Liquid Based Supercapacitors.
    Tamilarasan P; Ramaprabhu S
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1154-61. PubMed ID: 26353626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and sulfur co-doped graphene aerogel for high performance supercapacitors.
    Lu Z; Chen Y; Liu Z; Li A; Sun D; Zhuo K
    RSC Adv; 2018 May; 8(34):18966-18971. PubMed ID: 35539655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superbending (0-180°) and High-Voltage Operating Metal-Oxide-Based Flexible Supercapacitor.
    Kumar L; Boruah PK; Das MR; Deka S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37665-37674. PubMed ID: 31549801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes.
    Shao R; Niu J; Liang J; Liu M; Zhang Z; Dou M; Huang Y; Wang F
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42797-42805. PubMed ID: 29168631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylacetonitrile (C
    Ivol F; Porcher M; Ghosh A; Jacquemin J; Ghamouss F
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32532028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
    Shaikh JS; Shaikh NS; Kharade R; Beknalkar SA; Patil JV; Suryawanshi MP; Kanjanaboos P; Hong CK; Kim JH; Patil PS
    J Colloid Interface Sci; 2018 Oct; 527():40-48. PubMed ID: 29777971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous Activated Graphene Dispersions for Deposition of High-Surface Area Supercapacitor Electrodes.
    Skrypnychuk V; Boulanger N; Nordenström A; Talyzin A
    J Phys Chem Lett; 2020 Apr; 11(8):3032-3038. PubMed ID: 32162919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.
    Lin TW; Dai CS; Hung KC
    Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors.
    Vadiyar MM; Liu X; Ye Z
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45805-45817. PubMed ID: 31724841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.
    Yang CH; Huang PL; Luo XF; Wang CH; Li C; Wu YH; Chang JK
    ChemSusChem; 2015 May; 8(10):1779-86. PubMed ID: 25900279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors.
    Fan Z; Zhu J; Sun X; Cheng Z; Liu Y; Wang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21763-21772. PubMed ID: 28605894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as "spacers" for high-performance application in supercapacitors.
    Li T; Li N; Liu J; Cai K; Foda MF; Lei X; Han H
    Nanoscale; 2015 Jan; 7(2):659-69. PubMed ID: 25427664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance.
    Zhang Y; Tao B; Xing W; Zhang L; Xue Q; Yan Z
    Nanoscale; 2016 Apr; 8(15):7889-98. PubMed ID: 26660668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Partially Exfoliated Nitrogen-Doped Carbon Nanotubes Wrapped with Hierarchical Porous Carbon in Electrolytes.
    Mangisetti SR; Pari B; M K; Ramaprabhu S
    ChemSusChem; 2018 May; 11(10):1664-1677. PubMed ID: 29693315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantage of Larger Interlayer Spacing of a Mo
    Gandla D; Zhang F; Tan DQ
    ACS Omega; 2022 Mar; 7(8):7190-7198. PubMed ID: 35252709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.