These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 30240194)
1. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related]
2. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Olmos-Juste R; Alonso-Lerma B; Pérez-Jiménez R; Gabilondo N; Eceiza A Carbohydr Polym; 2021 Jul; 264():118026. PubMed ID: 33910718 [TBL] [Abstract][Full Text] [Related]
3. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
4. 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Baniasadi H; Polez RT; Kimiaei E; Madani Z; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2021 Dec; 192():1098-1107. PubMed ID: 34666132 [TBL] [Abstract][Full Text] [Related]
5. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Carrillo CA; Nypelö T; Rojas OJ Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673 [TBL] [Abstract][Full Text] [Related]
6. Direct-ink-writable nanocellulose ternary hydrogels via one-pot gelation with alginate and calcium montmorillonite. Li H; Xia Y; Guo R; Wang H; Wang X; Yang Z; Zhao Y; Li J; Wang C; Huan S Carbohydr Polym; 2024 Nov; 344():122494. PubMed ID: 39218538 [TBL] [Abstract][Full Text] [Related]
7. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Wang Q; Ji C; Sun L; Sun J; Liu J Molecules; 2020 May; 25(10):. PubMed ID: 32429191 [TBL] [Abstract][Full Text] [Related]
9. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Shin S; Hyun J Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573 [TBL] [Abstract][Full Text] [Related]
10. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. Olmos-Juste R; Guaresti O; Calvo-Correas T; Gabilondo N; Eceiza A Int J Pharm; 2021 Nov; 609():121124. PubMed ID: 34597726 [TBL] [Abstract][Full Text] [Related]
11. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Erlandsson J; Françon H; Marais A; Granberg H; Wågberg L Biomacromolecules; 2019 Feb; 20(2):728-737. PubMed ID: 30394086 [TBL] [Abstract][Full Text] [Related]
12. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
13. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225 [TBL] [Abstract][Full Text] [Related]
14. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Zhang X; Morits M; Jonkergouw C; Ora A; Valle-Delgado JJ; Farooq M; Ajdary R; Huan S; Linder M; Rojas O; Sipponen MH; Österberg M Biomacromolecules; 2020 May; 21(5):1875-1885. PubMed ID: 31992046 [TBL] [Abstract][Full Text] [Related]
16. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270 [TBL] [Abstract][Full Text] [Related]
17. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Ajdary R; Huan S; Zanjanizadeh Ezazi N; Xiang W; Grande R; Santos HA; Rojas OJ Biomacromolecules; 2019 Jul; 20(7):2770-2778. PubMed ID: 31117356 [TBL] [Abstract][Full Text] [Related]
18. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity. Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117 [TBL] [Abstract][Full Text] [Related]
19. Depletion Flocculation of High Internal Phase Pickering Emulsion Inks: A Colloidal Engineering Approach to Develop 3D Printed Porous Scaffolds with Tunable Bioactive Delivery. Shahbazi M; Jäger H; Huc-Mathis D; Asghartabar Kashi P; Ettelaie R; Sarkar A; Chen J ACS Appl Mater Interfaces; 2024 Aug; 16(33):43430-43450. PubMed ID: 39110913 [TBL] [Abstract][Full Text] [Related]
20. Emulsion Inks for 3D Printing of High Porosity Materials. Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]