These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30240203)

  • 21. Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets.
    Kleiman DE; Shukla D
    J Chem Theory Comput; 2023 Jul; 19(14):4377-4388. PubMed ID: 37027313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.
    Molloy K; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S8. PubMed ID: 24565158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced sampling simulations to construct free-energy landscape of protein-partner substrate interaction.
    Ikebe J; Umezawa K; Higo J
    Biophys Rev; 2016 Mar; 8(1):45-62. PubMed ID: 28510144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping the Ligand Binding Landscape.
    Dickson A
    Biophys J; 2018 Nov; 115(9):1707-1719. PubMed ID: 30327139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new class of enhanced kinetic sampling methods for building Markov state models.
    Bhoutekar A; Ghosh S; Bhattacharya S; Chatterjee A
    J Chem Phys; 2017 Oct; 147(15):152702. PubMed ID: 29055344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins.
    Bitran A; Jacobs WM; Shakhnovich E
    PLoS Comput Biol; 2020 Nov; 16(11):e1008323. PubMed ID: 33196646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovering Reaction Pathways, Slow Variables, and Committor Probabilities with Machine Learning.
    Chen H; Roux B; Chipot C
    J Chem Theory Comput; 2023 Jul; 19(14):4414-4426. PubMed ID: 37224455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative comparison of adaptive sampling methods for protein dynamics.
    Hruska E; Abella JR; Nüske F; Kavraki LE; Clementi C
    J Chem Phys; 2018 Dec; 149(24):244119. PubMed ID: 30599712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.
    Matsunaga Y; Komuro Y; Kobayashi C; Jung J; Mori T; Sugita Y
    J Phys Chem Lett; 2016 Apr; 7(8):1446-51. PubMed ID: 27049936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Markov State Models to simulate long timescale dynamics of biological macromolecules.
    Da LT; Sheong FK; Silva DA; Huang X
    Adv Exp Med Biol; 2014; 805():29-66. PubMed ID: 24446356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes.
    Shamsi Z; Cheng KJ; Shukla D
    J Phys Chem B; 2018 Sep; 122(35):8386-8395. PubMed ID: 30126271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient exploration of discrete energy landscapes.
    Mann M; Klemm K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011113. PubMed ID: 21405667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes.
    Qiu Y; O'Connor MS; Xue M; Liu B; Huang X
    J Chem Theory Comput; 2023 Jul; 19(14):4728-4742. PubMed ID: 37382437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics.
    Prinz JH; Chodera JD; Pande VS; Swope WC; Smith JC; Noé F
    J Chem Phys; 2011 Jun; 134(24):244108. PubMed ID: 21721613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning.
    Kleiman DE; Nadeem H; Shukla D
    J Phys Chem B; 2023 Dec; 127(50):10669-10681. PubMed ID: 38081185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-Learning-Assisted Enhanced Sampling for Exploring Molecular Conformational Changes.
    Fu H; Liu H; Xing J; Zhao T; Shao X; Cai W
    J Phys Chem B; 2023 Nov; 127(46):9926-9935. PubMed ID: 37947397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
    Rains EK; Andersen HC
    J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.