BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30240209)

  • 1. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein flexibility predictions using graph theory.
    Jacobs DJ; Rader AJ; Kuhn LA; Thorpe MF
    Proteins; 2001 Aug; 44(2):150-65. PubMed ID: 11391777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating protein thermodynamics from the three-dimensional structure of the native state using network rigidity.
    Jacobs DJ; Dallakyan S
    Biophys J; 2005 Feb; 88(2):903-15. PubMed ID: 15542549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and rigidity/flexibility-two sides of the same coin?
    Mamonova TB; Glyakina AV; Galzitskaya OV; Kurnikova MG
    Biochim Biophys Acta; 2013 May; 1834(5):854-66. PubMed ID: 23416444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein flexibility and dynamics using constraint theory.
    Thorpe MF; Lei M; Rader AJ; Jacobs DJ; Kuhn LA
    J Mol Graph Model; 2001; 19(1):60-9. PubMed ID: 11381531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAVENs: motion analysis and visualization of elastic networks and structural ensembles.
    Zimmermann MT; Kloczkowski A; Jernigan RL
    BMC Bioinformatics; 2011 Jun; 12():264. PubMed ID: 21711533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.
    Wells SA; Crennell SJ; Danson MJ
    Proteins; 2014 Oct; 82(10):2657-70. PubMed ID: 24948467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic network models capture the motions apparent within ensembles of RNA structures.
    Zimmermann MT; Jernigan RL
    RNA; 2014 Jun; 20(6):792-804. PubMed ID: 24759093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion.
    Stember JN; Wriggers W
    J Chem Phys; 2009 Aug; 131(7):074112. PubMed ID: 19708737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses.
    Jimenez-Roldan JE; Freedman RB; Römer RA; Wells SA
    Phys Biol; 2012 Feb; 9(1):016008. PubMed ID: 22313618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaching Elastic Network Models to Molecular Dynamics Flexibility.
    Orellana L; Rueda M; Ferrer-Costa C; Lopez-Blanco JR; Chacón P; Orozco M
    J Chem Theory Comput; 2010 Sep; 6(9):2910-23. PubMed ID: 26616090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical evaluation of simple network models of protein dynamics and their comparison with crystallographic B-factors.
    Soheilifard R; Makarov DE; Rodin GJ
    Phys Biol; 2008 Jun; 5(2):026008. PubMed ID: 18577808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical variations in proteins with large-scale motions highlight the formation of structural locks.
    Sacquin-Mora S
    J Struct Biol; 2018 Sep; 203(3):195-204. PubMed ID: 29852221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterizing elastic network models to capture the dynamics of proteins.
    Koehl P; Orland H; Delarue M
    J Comput Chem; 2021 Sep; 42(23):1643-1661. PubMed ID: 34117647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes and allosteric communications in human serum albumin due to ligand binding.
    Ahalawat N; Murarka RK
    J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone.
    Stetz G; Tse A; Verkhivker GM
    PLoS One; 2017; 12(11):e0186089. PubMed ID: 29095844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.