These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 30240231)

  • 1. Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires.
    Ho SC; Chang HJ; Chang CH; Lo ST; Creeth G; Kumar S; Farrer I; Ritchie D; Griffiths J; Jones G; Pepper M; Chen TM
    Phys Rev Lett; 2018 Sep; 121(10):106801. PubMed ID: 30240231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wigner crystal physics in quantum wires.
    Meyer JS; Matveev KA
    J Phys Condens Matter; 2009 Jan; 21(2):023203. PubMed ID: 21813970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zigzag phase transition in quantum wires.
    Mehta AC; Umrigar CJ; Meyer JS; Baranger HU
    Phys Rev Lett; 2013 Jun; 110(24):246802. PubMed ID: 25165952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure.
    Zhou Y; Sung J; Brutschea E; Esterlis I; Wang Y; Scuri G; Gelly RJ; Heo H; Taniguchi T; Watanabe K; Zaránd G; Lukin MD; Kim P; Demler E; Park H
    Nature; 2021 Jul; 595(7865):48-52. PubMed ID: 34194017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the electronic Wigner crystal in one dimension.
    Shapir I; Hamo A; Pecker S; Moca CP; Legeza Ö; Zarand G; Ilani S
    Science; 2019 May; 364(6443):870-875. PubMed ID: 31147516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging tunable Luttinger liquid systems in van der Waals heterostructures.
    Li H; Xiang Z; Wang T; Naik MH; Kim W; Nie J; Li S; Ge Z; He Z; Ou Y; Banerjee R; Taniguchi T; Watanabe K; Tongay S; Zettl A; Louie SG; Zaletel MP; Crommie MF; Wang F
    Nature; 2024 Jul; 631(8022):765-770. PubMed ID: 38961296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition from a one-dimensional to a quasi-one-dimensional state in interacting quantum wires.
    Meyer JS; Matveev KA; Larkin AI
    Phys Rev Lett; 2007 Mar; 98(12):126404. PubMed ID: 17501141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.
    Arnold T; Siegmund M; Pankratov O
    J Phys Condens Matter; 2011 Aug; 23(33):335601. PubMed ID: 21811009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Wigner Crystals as Mediators of Spin Currents and Quantum Information.
    Antonio B; Bayat A; Kumar S; Pepper M; Bose S
    Phys Rev Lett; 2015 Nov; 115(21):216804. PubMed ID: 26636865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: Charge Density Waves and Coupled Wigner Crystals.
    Zarenia M; Neilson D; Peeters FM
    Sci Rep; 2017 Sep; 7(1):11510. PubMed ID: 28912465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge density mapping of strongly-correlated few-electron two-dimensional quantum dots by the scanning probe technique.
    Wach E; Zebrowski DP; Szafran B
    J Phys Condens Matter; 2013 Aug; 25(33):335801. PubMed ID: 23880879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments.
    Escobar Azor M; Alrakik A; de Bentzmann L; Telleria-Allika X; Sánchez de Merás A; Evangelisti S; Berger JA
    J Phys Chem Lett; 2024 Apr; 15(13):3571-3575. PubMed ID: 38526852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally enhanced Wigner oscillations in two-electron 1D quantum dots.
    Cavaliere F; Ziani NT; Negro F; Sassetti M
    J Phys Condens Matter; 2014 Dec; 26(50):505301. PubMed ID: 25419598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wigner molecular crystals from multielectron moiré artificial atoms.
    Li H; Xiang Z; Reddy AP; Devakul T; Sailus R; Banerjee R; Taniguchi T; Watanabe K; Tongay S; Zettl A; Fu L; Crommie MF; Wang F
    Science; 2024 Jul; 385(6704):86-91. PubMed ID: 38963852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional Wigner Crystal in the Helical Luttinger Liquid.
    Traverso Ziani N; Crépin F; Trauzettel B
    Phys Rev Lett; 2015 Nov; 115(20):206402. PubMed ID: 26613457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signatures of Wigner crystal of electrons in a monolayer semiconductor.
    Smoleński T; Dolgirev PE; Kuhlenkamp C; Popert A; Shimazaki Y; Back P; Lu X; Kroner M; Watanabe K; Taniguchi T; Esterlis I; Demler E; Imamoğlu A
    Nature; 2021 Jul; 595(7865):53-57. PubMed ID: 34194018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Control of One-Dimensional Confined States in Strongly Correlated Homojunctions.
    Zhang Q; Zhang Y; Hou Y; Xu R; Jia L; Huang Z; Hao X; Zhou J; Zhang T; Liu L; Xu Y; Gao HJ; Wang Y
    Nano Lett; 2022 Feb; 22(3):1190-1197. PubMed ID: 35043640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunneling between parallel one-dimensional Wigner crystals.
    Méndez-Camacho R; Cruz-Hernández E
    Sci Rep; 2022 Mar; 12(1):4470. PubMed ID: 35296711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wigner crystal versus fermionization for one-dimensional Hubbard models with and without long-range interactions.
    Xu Z; Li L; Xianlong G; Chen S
    J Phys Condens Matter; 2013 Feb; 25(5):055601. PubMed ID: 23262414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
    Yu H; Li J; Loomis RA; Wang LW; Buhro WE
    Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.