These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30240234)

  • 21. Nematic order condensation and topological defects in inertial active nematics.
    Saghatchi R; Yildiz M; Doostmohammadi A
    Phys Rev E; 2022 Jul; 106(1-1):014705. PubMed ID: 35974636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics.
    Ray S; Zhang J; Dogic Z
    Phys Rev Lett; 2023 Jun; 130(23):238301. PubMed ID: 37354394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Many-defect solutions in planar nematics: interactions, spiral textures and boundary conditions.
    Čopar S; Kos Ž
    Soft Matter; 2024 Sep; 20(35):6894-6906. PubMed ID: 39150404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic self-diffusion in nematic, smectic-A, and reentrant nematic phases.
    Dvinskikh SV; Furó I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031704. PubMed ID: 23030930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dancing disclinations in confined active nematics.
    Shendruk TN; Doostmohammadi A; Thijssen K; Yeomans JM
    Soft Matter; 2017 May; 13(21):3853-3862. PubMed ID: 28345089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organized dynamics and the transition to turbulence of confined active nematics.
    Opathalage A; Norton MM; Juniper MPN; Langeslay B; Aghvami SA; Fraden S; Dogic Z
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4788-4797. PubMed ID: 30804207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-noise phase of a two-dimensional active nematic system.
    Shankar S; Ramaswamy S; Marchetti MC
    Phys Rev E; 2018 Jan; 97(1-1):012707. PubMed ID: 29448420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical defect-induced condensation in active nematics.
    Krüger T; Maryshev I; Frey E
    Soft Matter; 2023 Nov; 19(46):8954-8964. PubMed ID: 37971530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defect Superdiffusion and Unbinding in a 2D XY Model of Self-Driven Rotors.
    Rouzaire Y; Levis D
    Phys Rev Lett; 2021 Aug; 127(8):088004. PubMed ID: 34477446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active nematic liquid crystals simulated by particle-based mesoscopic methods.
    Macías-Durán J; Duarte-Alaniz V; Híjar H
    Soft Matter; 2023 Nov; 19(42):8052-8069. PubMed ID: 37700612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nonequilibrium force can stabilize 2D active nematics.
    Maitra A; Srivastava P; Marchetti MC; Lintuvuori JS; Ramaswamy S; Lenz M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6934-6939. PubMed ID: 29915056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergent topological phenomena in active polymeric fluids.
    Manna RK; Kumar PBS
    Soft Matter; 2019 Jan; 15(3):477-486. PubMed ID: 30575844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Athermal phase separation of self-propelled particles with no alignment.
    Fily Y; Marchetti MC
    Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nematic braids: topological invariants and rewiring of disclinations.
    Copar S; Zumer S
    Phys Rev Lett; 2011 Apr; 106(17):177801. PubMed ID: 21635062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A machine learning approach to robustly determine director fields and analyze defects in active nematics.
    Li Y; Zarei Z; Tran PN; Wang Y; Baskaran A; Fraden S; Hagan MF; Hong P
    Soft Matter; 2024 Feb; 20(8):1869-1883. PubMed ID: 38318759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topological transition in a two-dimensional three-vector model: A non-Boltzmann Monte Carlo study.
    Latha BK; Sastry VSS
    Phys Rev E; 2020 Oct; 102(4-1):040701. PubMed ID: 33212740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
    Wittkowski R; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Order-disorder transition in active nematic: A lattice model study.
    Das R; Kumar M; Mishra S
    Sci Rep; 2017 Aug; 7(1):7080. PubMed ID: 28765553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonequilibrium defect-unbinding transition: defect trajectories and loop statistics.
    Granzow GD; Riecke H
    Phys Rev Lett; 2001 Oct; 87(17):174502. PubMed ID: 11690276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.