These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30240242)
1. Antisite Pairs Suppress the Thermal Conductivity of BAs. Zheng Q; Polanco CA; Du MH; Lindsay LR; Chi M; Yan J; Sales BC Phys Rev Lett; 2018 Sep; 121(10):105901. PubMed ID: 30240242 [TBL] [Abstract][Full Text] [Related]
2. Experimental observation of high thermal conductivity in boron arsenide. Kang JS; Li M; Wu H; Nguyen H; Hu Y Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798 [TBL] [Abstract][Full Text] [Related]
3. Rational Design of Cu Vacancies and Antisite Defects for Boosting the Thermoelectric Properties of CuGaTe Tang Y; Liu K; Liao L; Wu J; Su X; Zhang Q; Poudeu PFP; Tang X ACS Appl Mater Interfaces; 2024 Jul; 16(30):39495-39505. PubMed ID: 39024645 [TBL] [Abstract][Full Text] [Related]
4. High thermal conductivity in cubic boron arsenide crystals. Li S; Zheng Q; Lv Y; Liu X; Wang X; Huang PY; Cahill DG; Lv B Science; 2018 Aug; 361(6402):579-581. PubMed ID: 29976796 [TBL] [Abstract][Full Text] [Related]
5. Atomic-scale visualization of antisite defects in LiFePO4. Chung SY; Choi SY; Yamamoto T; Ikuhara Y Phys Rev Lett; 2008 Mar; 100(12):125502. PubMed ID: 18517881 [TBL] [Abstract][Full Text] [Related]
6. Direct Identification of Antisite Cation Intermixing and Correlation with Electronic Conduction in CuBi Jung HJ; Lim Y; Choi BU; Bae HB; Jung W; Ryu S; Oh J; Chung SY ACS Appl Mater Interfaces; 2020 Sep; 12(39):43720-43727. PubMed ID: 32877165 [TBL] [Abstract][Full Text] [Related]
7. Anomalous Defect Dependence of Thermal Conductivity in Epitaxial WO Ning S; Huberman SC; Ding Z; Nahm HH; Kim YH; Kim HS; Chen G; Ross CA Adv Mater; 2019 Oct; 31(43):e1903738. PubMed ID: 31517407 [TBL] [Abstract][Full Text] [Related]
8. Orchestrating the impact of antisites and vacancy defects on the elastic and optoelectronic properties of boron arsenide. Hussain A; Mian SA; Ahmed E; Jang J J Mol Model; 2023 Dec; 29(12):393. PubMed ID: 38041727 [TBL] [Abstract][Full Text] [Related]
9. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential. Liu Z; Yang X; Zhang B; Li W ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723 [TBL] [Abstract][Full Text] [Related]
10. An antisite defect mechanism for room temperature ferroelectricity in orthoferrites. Ning S; Kumar A; Klyukin K; Cho E; Kim JH; Su T; Kim HS; LeBeau JM; Yildiz B; Ross CA Nat Commun; 2021 Jul; 12(1):4298. PubMed ID: 34262033 [TBL] [Abstract][Full Text] [Related]
11. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study. Raeisi M; Ahmadi S; Rajabpour A Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704 [TBL] [Abstract][Full Text] [Related]
12. Strong reduction of thermal conductivity of WSe Wang B; Yan X; Yan H; Cai Y Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994 [TBL] [Abstract][Full Text] [Related]
13. Unusual high thermal conductivity in boron arsenide bulk crystals. Tian F; Song B; Chen X; Ravichandran NK; Lv Y; Chen K; Sullivan S; Kim J; Zhou Y; Liu TH; Goni M; Ding Z; Sun J; Udalamatta Gamage GAG; Sun H; Ziyaee H; Huyan S; Deng L; Zhou J; Schmidt AJ; Chen S; Chu CW; Huang PY; Broido D; Shi L; Chen G; Ren Z Science; 2018 Aug; 361(6402):582-585. PubMed ID: 29976797 [TBL] [Abstract][Full Text] [Related]
14. Thermal conductivity of graphene with defects induced by electron beam irradiation. Malekpour H; Ramnani P; Srinivasan S; Balasubramanian G; Nika DL; Mulchandani A; Lake RK; Balandin AA Nanoscale; 2016 Aug; 8(30):14608-16. PubMed ID: 27432290 [TBL] [Abstract][Full Text] [Related]
15. Selective Antisite Defect Formation in WS Wang K; Zhang L; Nguyen GD; Sang X; Liu C; Yu Y; Ko W; Unocic RR; Puretzky AA; Rouleau CM; Geohegan DB; Fu L; Duscher G; Li AP; Yoon M; Xiao K Adv Mater; 2022 Jan; 34(3):e2106674. PubMed ID: 34738669 [TBL] [Abstract][Full Text] [Related]
16. First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors. De Vos A; Lejaeghere K; Vanpoucke DE; Joos JJ; Smet PF; Hemelsoet K Inorg Chem; 2016 Mar; 55(5):2402-12. PubMed ID: 26866779 [TBL] [Abstract][Full Text] [Related]
17. Clathrate Ba8Au16P30: the "gold standard" for lattice thermal conductivity. Fulmer J; Lebedev OI; Roddatis VV; Kaseman DC; Sen S; Dolyniuk JA; Lee K; Olenev AV; Kovnir K J Am Chem Soc; 2013 Aug; 135(33):12313-23. PubMed ID: 23862668 [TBL] [Abstract][Full Text] [Related]
18. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation. Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791 [TBL] [Abstract][Full Text] [Related]
19. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe Zhang J; Sun W; Zhao J; Sun L; Li L; Yan XJ; Wang K; Gu ZB; Luo ZL; Chen Y; Yuan GL; Lu MH; Zhang ST ACS Appl Mater Interfaces; 2017 Aug; 9(30):25397-25403. PubMed ID: 28699729 [TBL] [Abstract][Full Text] [Related]
20. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study. Guo SD; Liu JT Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]