These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30240258)
1. Dynamic Vorticity Banding in Discontinuously Shear Thickening Suspensions. Chacko RN; Mari R; Cates ME; Fielding SM Phys Rev Lett; 2018 Sep; 121(10):108003. PubMed ID: 30240258 [TBL] [Abstract][Full Text] [Related]
2. Vorticity banding in rodlike virus suspensions. Kang K; Lettinga MP; Dogic Z; Dhont JK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026307. PubMed ID: 17025539 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound velocimetry in a shear-thickening wormlike micellar solution: evidence for the coexistence of radial and vorticity shear bands. Herle V; Manneville S; Fischer P Eur Phys J E Soft Matter; 2008; 26(1-2):3-12. PubMed ID: 18415043 [TBL] [Abstract][Full Text] [Related]
4. S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology. Pan Z; de Cagny H; Weber B; Bonn D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032202. PubMed ID: 26465464 [TBL] [Abstract][Full Text] [Related]
5. Vorticity structuring and velocity rolls triggered by gradient shear bands. Fielding SM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016311. PubMed ID: 17677567 [TBL] [Abstract][Full Text] [Related]
6. Temporal oscillations of the shear stress and scattered light in a shear-banding--shear-thickening micellar solution. Azzouzi H; Decruppe JP; Lerouge S; Greffier O Eur Phys J E Soft Matter; 2005 Aug; 17(4):507-14. PubMed ID: 16132153 [TBL] [Abstract][Full Text] [Related]
7. Constitutive Model for Time-Dependent Flows of Shear-Thickening Suspensions. Gillissen JJJ; Ness C; Peterson JD; Wilson HJ; Cates ME Phys Rev Lett; 2019 Nov; 123(21):214504. PubMed ID: 31809141 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulations of vorticity banding of emulsions in shear flows. De Vita F; Rosti ME; Caserta S; Brandt L Soft Matter; 2020 Mar; 16(11):2854-2863. PubMed ID: 32107513 [TBL] [Abstract][Full Text] [Related]
9. Interface instability in shear-banding flow. Lerouge S; Argentina M; Decruppe JP Phys Rev Lett; 2006 Mar; 96(8):088301. PubMed ID: 16606230 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic approach to rheology of complex fluids: flow-concentration coupling. García-Rojas B; Bautista F; Puig JE; Manero O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036313. PubMed ID: 19905218 [TBL] [Abstract][Full Text] [Related]
11. Minimal model for chaotic shear banding in shear thickening fluids. Aradian A; Cates ME Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041508. PubMed ID: 16711810 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of dynamic shear jamming in dense suspensions. Peters IR; Majumdar S; Jaeger HM Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934 [TBL] [Abstract][Full Text] [Related]
13. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Mari R; Seto R; Morris JF; Denn MM Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744 [TBL] [Abstract][Full Text] [Related]
14. Molecular Processes Leading to Shear Banding in Entangled Polymeric Solutions. Boudaghi M; Edwards BJ; Khomami B Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571158 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the Role of Order-to-Disorder Transition in Shear Thickening Suspensions. Lee J; Jiang Z; Wang J; Sandy AR; Narayanan S; Lin XM Phys Rev Lett; 2018 Jan; 120(2):028002. PubMed ID: 29376723 [TBL] [Abstract][Full Text] [Related]
16. Interfacially driven instability in the microchannel flow of a shear-banding fluid. Nghe P; Fielding SM; Tabeling P; Ajdari A Phys Rev Lett; 2010 Jun; 104(24):248303. PubMed ID: 20867342 [TBL] [Abstract][Full Text] [Related]
17. Alternating vorticity bands in a solution of wormlike micelles. Herle V; Kohlbrecher J; Pfister B; Fischer P; Windhab EJ Phys Rev Lett; 2007 Oct; 99(15):158302. PubMed ID: 17995220 [TBL] [Abstract][Full Text] [Related]
18. Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. Kamibayashi M; Ogura H; Otsubo Y J Colloid Interface Sci; 2008 May; 321(2):294-301. PubMed ID: 18342327 [TBL] [Abstract][Full Text] [Related]
19. Apparent wall slip in non-Brownian hard-sphere suspensions. Korhonen M; Mohtaschemi M; Puisto A; Illa X; Alava MJ Eur Phys J E Soft Matter; 2015 May; 38(5):129. PubMed ID: 25998170 [TBL] [Abstract][Full Text] [Related]
20. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear. Forest MG; Phuworawong P; Wang Q; Zhou R Philos Trans A Math Phys Eng Sci; 2014 Nov; 372(2029):. PubMed ID: 25332387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]