These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT. Oberai A; Varghese B; Cen S; Angelini T; Hwang D; Gill I; Aron M; Lau C; Duddalwar V Br J Radiol; 2020 Jul; 93(1111):20200002. PubMed ID: 32356484 [TBL] [Abstract][Full Text] [Related]
4. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Zabihollahy F; Schieda N; Krishna S; Ukwatta E Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661 [TBL] [Abstract][Full Text] [Related]
5. Quantitative computer-aided diagnostic algorithm for automated detection of peak lesion attenuation in differentiating clear cell from papillary and chromophobe renal cell carcinoma, oncocytoma, and fat-poor angiomyolipoma on multiphasic multidetector computed tomography. Coy H; Young JR; Douek ML; Brown MS; Sayre J; Raman SS Abdom Radiol (NY); 2017 Jul; 42(7):1919-1928. PubMed ID: 28280876 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Contour Analysis as an Image-based Discriminator Between Benign and Malignant Renal Tumors. Yap FY; Hwang DH; Cen SY; Varghese BA; Desai B; Quinn BD; Gupta MN; Rajarubendra N; Desai MM; Aron M; Liang G; Aron M; Gill IS; Duddalwar VA Urology; 2018 Apr; 114():121-127. PubMed ID: 29305199 [TBL] [Abstract][Full Text] [Related]
8. Texture analysis as a radiomic marker for differentiating renal tumors. Yu H; Scalera J; Khalid M; Touret AS; Bloch N; Li B; Qureshi MM; Soto JA; Anderson SW Abdom Radiol (NY); 2017 Oct; 42(10):2470-2478. PubMed ID: 28421244 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348 [TBL] [Abstract][Full Text] [Related]
10. Usefulness of CT texture analysis in differentiating benign and malignant renal tumours. Deng Y; Soule E; Cui E; Samuel A; Shah S; Lall C; Sundaram C; Sandrasegaran K Clin Radiol; 2020 Feb; 75(2):108-115. PubMed ID: 31668402 [TBL] [Abstract][Full Text] [Related]
11. Characterization of renal cell carcinoma, oncocytoma, and lipid-poor angiomyolipoma by unenhanced, nephrographic, and delayed phase contrast-enhanced computed tomography. Ishigami K; Pakalniskis MG; Leite LV; Lee DK; Holanda DG; Rajput M Clin Imaging; 2015; 39(1):76-84. PubMed ID: 25457535 [TBL] [Abstract][Full Text] [Related]
12. Subtype Differentiation of Small (≤ 4 cm) Solid Renal Mass Using Volumetric Histogram Analysis of DWI at 3-T MRI. Li A; Xing W; Li H; Hu Y; Hu D; Li Z; Kamel IR AJR Am J Roentgenol; 2018 Sep; 211(3):614-623. PubMed ID: 29812980 [TBL] [Abstract][Full Text] [Related]
13. Small (< 4 cm) Renal Mass: Differentiation of Oncocytoma From Renal Cell Carcinoma on Biphasic Contrast-Enhanced CT. Sasaguri K; Takahashi N; Gomez-Cardona D; Leng S; Schmit GD; Carter RE; Leibovich BC; Kawashima A AJR Am J Roentgenol; 2015 Nov; 205(5):999-1007. PubMed ID: 26496547 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation. Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180 [TBL] [Abstract][Full Text] [Related]
15. Small renal masses (≤ 4 cm): differentiation of oncocytoma from renal clear cell carcinoma using ratio of lesion to cortex attenuation and aorta-lesion attenuation difference (ALAD) on contrast-enhanced CT. Gentili F; Bronico I; Maestroni U; Ziglioli F; Silini EM; Buti S; de Filippo M Radiol Med; 2020 Dec; 125(12):1280-1287. PubMed ID: 32385827 [TBL] [Abstract][Full Text] [Related]
16. The value of quantitative CT texture analysis in differentiation of angiomyolipoma without visible fat from clear cell renal cell carcinoma on four-phase contrast-enhanced CT images. You MW; Kim N; Choi HJ Clin Radiol; 2019 Jul; 74(7):547-554. PubMed ID: 31010583 [TBL] [Abstract][Full Text] [Related]
17. Can radiologists and urologists reliably determine renal mass histology using standard preoperative computed tomography imaging? Monn MF; Gellhaus PT; Patel AA; Masterson TA; Tann M; Boris RS J Endourol; 2015 Apr; 29(4):391-6. PubMed ID: 25222030 [TBL] [Abstract][Full Text] [Related]
18. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT. Schieda N; Nguyen K; Thornhill RE; McInnes MDF; Wu M; James N Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049 [TBL] [Abstract][Full Text] [Related]
19. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
20. MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma. Razik A; Goyal A; Sharma R; Kandasamy D; Seth A; Das P; Ganeshan B Br J Radiol; 2020 Oct; 93(1114):20200569. PubMed ID: 32667833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]