These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30240365)

  • 1. A three-dimensional insight into correlation between carrier lifetime and surface recombination velocity for nanowires.
    Ren D; Rong Z; Somasundaram S; Azizur-Rahman KM; Liang B; Huffaker DL
    Nanotechnology; 2018 Dec; 29(50):504003. PubMed ID: 30240365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.
    Ren D; Scofield AC; Farrell AC; Rong Z; Haddad MA; Laghumavarapu RB; Liang B; Huffaker DL
    Nanoscale; 2018 Apr; 10(16):7792-7802. PubMed ID: 29663009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy.
    Joyce HJ; Docherty CJ; Gao Q; Tan HH; Jagadish C; Lloyd-Hughes J; Herz LM; Johnston MB
    Nanotechnology; 2013 May; 24(21):214006. PubMed ID: 23619012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the role of facets and twin defects in the optical performance of GaAs nanowires for laser applications.
    Azimi Z; Gagrani N; Qu J; Lem OLC; Mokkapati S; Cairney JM; Zheng R; Tan HH; Jagadish C; Wong-Leung J
    Nanoscale Horiz; 2021 Jun; 6(7):559-567. PubMed ID: 33999985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy.
    Joyce HJ; Wong-Leung J; Yong CK; Docherty CJ; Paiman S; Gao Q; Tan HH; Jagadish C; Lloyd-Hughes J; Herz LM; Johnston MB
    Nano Lett; 2012 Oct; 12(10):5325-30. PubMed ID: 22962963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires.
    Chen SL; Chen WM; Ishikawa F; Buyanova IA
    Sci Rep; 2015 Jun; 5():11653. PubMed ID: 26100755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface passivation on twin-free GaAs nanosheets.
    Arab S; Chi CY; Shi T; Wang Y; Dapkus DP; Jackson HE; Smith LM; Cronin SB
    ACS Nano; 2015 Feb; 9(2):1336-40. PubMed ID: 25565000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier dynamics and recombination mechanisms in InP twinning superlattice nanowires.
    Yuan X; Liu K; Skalsky S; Parkinson P; Fang L; He J; Tan HH; Jagadish C
    Opt Express; 2020 May; 28(11):16795-16804. PubMed ID: 32549494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires.
    Joyce HJ; Parkinson P; Jiang N; Docherty CJ; Gao Q; Tan HH; Jagadish C; Herz LM; Johnston MB
    Nano Lett; 2014 Oct; 14(10):5989-94. PubMed ID: 25232659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier Recombination in the Base, Interior, and Surface of InAs/InAlAs Core-Shell Nanowires Grown on Silicon.
    Zhang K; Li X; Dai W; Toor F; Prineas JP
    Nano Lett; 2019 Jul; 19(7):4272-4278. PubMed ID: 31244233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer.
    Yong CK; Noori K; Gao Q; Joyce HJ; Tan HH; Jagadish C; Giustino F; Johnston MB; Herz LM
    Nano Lett; 2012 Dec; 12(12):6293-301. PubMed ID: 23171081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Surface Recombination in Halide Perovskite Nanoplatelets.
    Wen X; Chen W; Yang J; Ou Q; Yang T; Zhou C; Lin H; Wang Z; Zhang Y; Conibeer G; Bao Q; Jia B; Moss DJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31586-31593. PubMed ID: 30146882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Dimensional and Structural Dependencies of Hot Carrier Effects in InGaAs Nanowires: Implications for Photovoltaic Solar Cells.
    Esmaielpour H; Isaev N; Makhfudz I; Döblinger M; Finley JJ; Koblmüller G
    ACS Appl Nano Mater; 2024 Feb; 7(3):2817-2824. PubMed ID: 38357220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires.
    Soudi A; Hsu CH; Gu Y
    Nano Lett; 2012 Oct; 12(10):5111-6. PubMed ID: 22985208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping.
    Xia H; Lu ZY; Li TX; Parkinson P; Liao ZM; Liu FH; Lu W; Hu WD; Chen PP; Xu HY; Zou J; Jagadish C
    ACS Nano; 2012 Jul; 6(7):6005-13. PubMed ID: 22724925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method.
    Demichel O; Calvo V; Besson A; Noé P; Salem B; Pauc N; Oehler F; Gentile P; Magnea N
    Nano Lett; 2010 Jul; 10(7):2323-9. PubMed ID: 20503995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars.
    Higuera-Rodriguez A; Romeira B; Birindelli S; Black LE; Smalbrugge E; van Veldhoven PJ; Kessels WM; Smit MK; Fiore A
    Nano Lett; 2017 Apr; 17(4):2627-2633. PubMed ID: 28340296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching of the luminescence intensity of GaN nanowires under electron beam exposure: impact of C adsorption on the exciton lifetime.
    Lähnemann J; Flissikowski T; Wölz M; Geelhaar L; Grahn HT; Brandt O; Jahn U
    Nanotechnology; 2016 Nov; 27(45):455706. PubMed ID: 27713184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.