These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30240394)

  • 1. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition.
    Beheshti Foroutani M; Parrish CC; Wells J; Taylor RG; Rise ML; Shahidi F
    PLoS One; 2018; 13(9):e0198538. PubMed ID: 30240394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): effects on liver and head kidney lipid class and fatty acid composition.
    Foroutani MB; Parrish CC; Wells J; Taylor RG; Rise ML
    Fish Physiol Biochem; 2020 Dec; 46(6):2331-2353. PubMed ID: 33001367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil.
    Caballero-Solares A; Xue X; Parrish CC; Foroutani MB; Taylor RG; Rise ML
    BMC Genomics; 2018 Nov; 19(1):796. PubMed ID: 30390635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend.
    Torstensen BE; Bell JG; Rosenlund G; Henderson RJ; Graff IE; Tocher DR; Lie Ø; Sargent JR
    J Agric Food Chem; 2005 Dec; 53(26):10166-78. PubMed ID: 16366711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement of dietary fish oil for Atlantic salmon parr (Salmo salar L.) with a stearidonic acid containing oil has no effect on omega-3 long-chain polyunsaturated fatty acid concentrations.
    Miller MR; Nichols PD; Carter CG
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Feb; 146(2):197-206. PubMed ID: 17134928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets.
    Miller MR; Nichols PD; Carter CG
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):382-92. PubMed ID: 17588797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar).
    Katan T; Caballero-Solares A; Taylor RG; Rise ML; Parrish CC
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():290-304. PubMed ID: 31003197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality.
    Hixson SM; Parrish CC; Anderson DM
    Food Chem; 2014 Aug; 157():51-61. PubMed ID: 24679751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry.
    Betancor MB; Li K; Sprague M; Bardal T; Sayanova O; Usher S; Han L; Måsøval K; Torrissen O; Napier JA; Tocher DR; Olsen RE
    PLoS One; 2017; 12(4):e0175415. PubMed ID: 28403232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients.
    Betancor MB; Dam TM; Walton J; Morken T; Campbell PJ; Tocher DR
    Br J Nutr; 2016 Apr; 115(8):1325-38. PubMed ID: 26907361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism.
    Bell JG; Henderson RJ; Tocher DR; McGhee F; Dick JR; Porter A; Smullen RP; Sargent JR
    J Nutr; 2002 Feb; 132(2):222-30. PubMed ID: 11823582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism.
    Bell JG; McEvoy J; Tocher DR; McGhee F; Campbell PJ; Sargent JR
    J Nutr; 2001 May; 131(5):1535-43. PubMed ID: 11340112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and α-Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.
    Nuez-Ortín WG; Carter CG; Wilson R; Cooke I; Nichols PD
    PLoS One; 2016; 11(8):e0161513. PubMed ID: 27556399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil from transgenic Camelina sativa containing over 25 % n-3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (Salmo salar).
    Betancor MB; Li K; Bucerzan VS; Sprague M; Sayanova O; Usher S; Han L; Norambuena F; Torrissen O; Napier JA; Tocher DR; Olsen RE
    Br J Nutr; 2018 Jun; 119(12):1378-1392. PubMed ID: 29845899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar).
    Leaver MJ; Villeneuve LA; Obach A; Jensen L; Bron JE; Tocher DR; Taggart JB
    BMC Genomics; 2008 Jun; 9():299. PubMed ID: 18577222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet.
    Bell JG; Henderson RJ; Tocher DR; Sargent JR
    Lipids; 2004 Mar; 39(3):223-32. PubMed ID: 15233400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids.
    Hixson SM; Parrish CC
    J Anim Sci; 2014 Mar; 92(3):1055-67. PubMed ID: 24496831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of feeding Atlantic salmon (Salmo salar L.) a diet enriched with stearidonic acid from parr to smolt on growth and n-3 long-chain PUFA biosynthesis.
    Codabaccus MB; Bridle AR; Nichols PD; Carter CG
    Br J Nutr; 2011 Jun; 105(12):1772-82. PubMed ID: 21303572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary resveratrol impairs body weight gain due to reduction of feed intake without affecting fatty acid composition in Atlantic salmon.
    Menoyo D; Kühn G; Ruiz-Lopez N; Pallauf K; Stubhaug I; Pastor JJ; Ipharraguerre IR; Rimbach G
    Animal; 2019 Jan; 13(1):25-32. PubMed ID: 29681254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.
    Betancor MB; Olsen RE; Solstorm D; Skulstad OF; Tocher DR
    Biochim Biophys Acta; 2016 Mar; 1861(3):227-38. PubMed ID: 26732752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.