BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30240511)

  • 21. Dysfunctional cognitive control and reward processing in adolescents with Internet gaming disorder.
    Li Q; Wang Y; Yang Z; Dai W; Zheng Y; Sun Y; Liu X
    Psychophysiology; 2020 Feb; 57(2):e13469. PubMed ID: 31456249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition.
    Chmielewski WX; Mückschel M; Beste C
    Hum Brain Mapp; 2018 Apr; 39(4):1839-1849. PubMed ID: 29334155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EEG tensor decomposition delineates neurophysiological principles underlying conflict-modulated action restraint and action cancellation.
    Gholamipourbarogh N; Eggert E; Münchau A; Frings C; Beste C
    Neuroimage; 2024 Jul; 295():120667. PubMed ID: 38825216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes.
    Chmielewski WX; Beste C
    Neuroimage; 2019 Aug; 196():227-236. PubMed ID: 30991125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential conflict resolution under multiple concurrent conflicts: An ERP study.
    Rey-Mermet A; Gade M; Steinhauser M
    Neuroimage; 2019 Mar; 188():411-418. PubMed ID: 30562575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in response inhibition processes between adolescents and adults are modulated by sensory processes.
    Bodmer B; Friedrich J; Roessner V; Beste C
    Dev Cogn Neurosci; 2018 Jun; 31():35-45. PubMed ID: 29730536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does cognitive control ability mediate the relationship between reward-related mechanisms, impulsivity, and maladaptive outcomes in adolescence and young adulthood?
    McKewen M; Skippen P; Cooper PS; Wong ASW; Michie PT; Lenroot R; Karayanidis F
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):653-676. PubMed ID: 31119652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands.
    Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prefrontal engagement during sequential manual actions in children at early adolescence compared with adults.
    Domellöf E; Säfström D
    Neuroimage; 2020 May; 211():116623. PubMed ID: 32057999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults.
    Ribeiro MJ; Castelo-Branco M
    Neuroimage; 2019 Oct; 199():521-533. PubMed ID: 31173904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resting theta activity is associated with specific coding levels in event-related theta activity during conflict monitoring.
    Pscherer C; Bluschke A; Prochnow A; Eggert E; Mückschel M; Beste C
    Hum Brain Mapp; 2020 Dec; 41(18):5114-5127. PubMed ID: 32822109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A developmental examination of medial frontal theta dynamics and inhibitory control.
    van Noordt S; Heffer T; Willoughby T
    Neuroimage; 2022 Feb; 246():118765. PubMed ID: 34875380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition.
    Chmielewski WX; Beste C
    Sci Rep; 2016 May; 6():26289. PubMed ID: 27222225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatosensory lateral inhibition processes modulate motor response inhibition - an EEG source localization study.
    Friedrich J; Mückschel M; Beste C
    Sci Rep; 2017 Jun; 7(1):4454. PubMed ID: 28667296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing.
    Adelhöfer N; Gohil K; Passow S; Teufert B; Roessner V; Li SC; Beste C
    Hum Brain Mapp; 2018 Dec; 39(12):5050-5061. PubMed ID: 30133058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization.
    Wolff N; Mückschel M; Beste C
    Brain Struct Funct; 2017 Nov; 222(8):3819-3831. PubMed ID: 28470552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aging Modulates Prefrontal Plasticity Induced by Executive Control Training.
    Najberg H; Wachtl L; Anziano M; Mouthon M; Spierer L
    Cereb Cortex; 2021 Jan; 31(2):809-825. PubMed ID: 32930336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.
    Friedrich J; Mückschel M; Beste C
    Brain Struct Funct; 2018 Mar; 223(2):687-699. PubMed ID: 28917007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.