These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Enhanced Heterologous Spinosad Production from a 79-kb Synthetic Multioperon Assembly. Song C; Luan J; Cui Q; Duan Q; Li Z; Gao Y; Li R; Li A; Shen Y; Li Y; Stewart AF; Zhang Y; Fu J; Wang H ACS Synth Biol; 2019 Jan; 8(1):137-147. PubMed ID: 30590919 [TBL] [Abstract][Full Text] [Related]
5. Dissecting Bottromycin Biosynthesis Using Comparative Untargeted Metabolomics. Crone WJ; Vior NM; Santos-Aberturas J; Schmitz LG; Leeper FJ; Truman AW Angew Chem Int Ed Engl; 2016 Aug; 55(33):9639-43. PubMed ID: 27374993 [TBL] [Abstract][Full Text] [Related]
6. Library of Synthetic Streptomyces Regulatory Sequences for Use in Promoter Engineering of Natural Product Biosynthetic Gene Clusters. Ji CH; Kim JP; Kang HS ACS Synth Biol; 2018 Aug; 7(8):1946-1955. PubMed ID: 29966097 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the Stereoselective P450 Enzyme BotCYP Enables the Adam S; Franz L; Milhim M; Bernhardt R; Kalinina OV; Koehnke J J Am Chem Soc; 2020 Dec; 142(49):20560-20565. PubMed ID: 33249843 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Bottromycin Biosynthesis Involves an Internal Transcriptional Start Site and a Cluster-Situated Modulator. Vior NM; Cea-Torrescassana E; Eyles TH; Chandra G; Truman AW Front Microbiol; 2020; 11():495. PubMed ID: 32273872 [TBL] [Abstract][Full Text] [Related]
9. Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy. Wang Y; Tao Z; Zheng H; Zhang F; Long Q; Deng Z; Tao M Metab Eng; 2016 Nov; 38():418-426. PubMed ID: 27746324 [TBL] [Abstract][Full Text] [Related]
10. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Luo C; Chen Y; Liu X; Wang X; Wang X; Li X; Zhao Y; Wei L Appl Microbiol Biotechnol; 2019 Jun; 103(11):4467-4481. PubMed ID: 30989253 [TBL] [Abstract][Full Text] [Related]
11. AGOS: A Plug-and-Play Method for the Assembly of Artificial Gene Operons into Functional Biosynthetic Gene Clusters. Basitta P; Westrich L; Rösch M; Kulik A; Gust B; Apel AK ACS Synth Biol; 2017 May; 6(5):817-825. PubMed ID: 28182401 [TBL] [Abstract][Full Text] [Related]
12. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Huo L; Rachid S; Stadler M; Wenzel SC; Müller R Chem Biol; 2012 Oct; 19(10):1278-87. PubMed ID: 23021914 [TBL] [Abstract][Full Text] [Related]
13. Discovery and overproduction of novel highly bioactive pamamycins through transcriptional engineering of the biosynthetic gene cluster. Eckert N; Rebets Y; Horbal L; Zapp J; Herrmann J; Busche T; Müller R; Kalinowski J; Luzhetskyy A Microb Cell Fact; 2023 Nov; 22(1):233. PubMed ID: 37964282 [TBL] [Abstract][Full Text] [Related]
14. Analysis of YM-216391 biosynthetic gene cluster and improvement of the cyclopeptide production in a heterologous host. Jian XH; Pan HX; Ning TT; Shi YY; Chen YS; Li Y; Zeng XW; Xu J; Tang GL ACS Chem Biol; 2012 Apr; 7(4):646-51. PubMed ID: 22248379 [TBL] [Abstract][Full Text] [Related]
15. nonG, a constituent of the nonactin biosynthetic gene cluster, regulates nocardamine synthesis in Streptomyces albus J1074. Park W; Woo JK; Shin J; Oh KB Biochem Biophys Res Commun; 2017 Aug; 490(3):664-669. PubMed ID: 28634080 [TBL] [Abstract][Full Text] [Related]
16. Characterization of three regulatory genes involved in enduracidin biosynthesis and improvement of enduracidin production in Streptomyces fungicidicus. Chen YW; Liu XC; Lv FX; Li P J Appl Microbiol; 2019 Dec; 127(6):1698-1705. PubMed ID: 31424146 [TBL] [Abstract][Full Text] [Related]
17. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Li L; Zheng G; Chen J; Ge M; Jiang W; Lu Y Metab Eng; 2017 Mar; 40():80-92. PubMed ID: 28088540 [TBL] [Abstract][Full Text] [Related]
18. Effect of "ribosome engineering" on the transcription level and production of S. albus indigenous secondary metabolites. Lopatniuk M; Myronovskyi M; Nottebrock A; Busche T; Kalinowski J; Ostash B; Fedorenko V; Luzhetskyy A Appl Microbiol Biotechnol; 2019 Sep; 103(17):7097-7110. PubMed ID: 31324940 [TBL] [Abstract][Full Text] [Related]
19. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711 [TBL] [Abstract][Full Text] [Related]
20. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Myronovskyi M; Rosenkränzer B; Nadmid S; Pujic P; Normand P; Luzhetskyy A Metab Eng; 2018 Sep; 49():316-324. PubMed ID: 30196100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]