These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30240902)
1. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data. Wen Z; Yu T; Yu Z; Li Y Neuroimage; 2019 Jan; 184():417-430. PubMed ID: 30240902 [TBL] [Abstract][Full Text] [Related]
2. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection. Soch J; Haynes JD; Allefeld C Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536 [TBL] [Abstract][Full Text] [Related]
3. Voxel selection framework in multi-voxel pattern analysis of FMRI data for prediction of neural response to visual stimuli. Chou CA; Kampa K; Mehta SH; Tungaraza RF; Chaovalitwongse WA; Grabowski TJ IEEE Trans Med Imaging; 2014 Apr; 33(4):925-34. PubMed ID: 24710161 [TBL] [Abstract][Full Text] [Related]
4. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070 [TBL] [Abstract][Full Text] [Related]
5. Reproducibility of importance extraction methods in neural network based fMRI classification. Gotsopoulos A; Saarimäki H; Glerean E; Jääskeläinen IP; Sams M; Nummenmaa L; Lampinen J Neuroimage; 2018 Nov; 181():44-54. PubMed ID: 29964190 [TBL] [Abstract][Full Text] [Related]
6. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning. Du C; Du C; Huang L; He H IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354 [TBL] [Abstract][Full Text] [Related]
7. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. Yamashita O; Sato MA; Yoshioka T; Tong F; Kamitani Y Neuroimage; 2008 Oct; 42(4):1414-29. PubMed ID: 18598768 [TBL] [Abstract][Full Text] [Related]
8. Transfer learning of deep neural network representations for fMRI decoding. Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315 [TBL] [Abstract][Full Text] [Related]
9. Brain-decoding fMRI reveals how wholes relate to the sum of parts. Kubilius J; Baeck A; Wagemans J; Op de Beeck HP Cortex; 2015 Nov; 72():5-14. PubMed ID: 25771992 [TBL] [Abstract][Full Text] [Related]
10. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns. Chaimow D; Uğurbil K; Shmuel A Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061 [TBL] [Abstract][Full Text] [Related]
11. Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists. Weaverdyck ME; Lieberman MD; Parkinson C Soc Cogn Affect Neurosci; 2020 Jun; 15(4):487-509. PubMed ID: 32364607 [TBL] [Abstract][Full Text] [Related]
12. Multiclass fMRI data decoding and visualization using supervised self-organizing maps. Hausfeld L; Valente G; Formisano E Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045 [TBL] [Abstract][Full Text] [Related]
13. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions. Lee D; Yun S; Jang C; Park HJ PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830 [TBL] [Abstract][Full Text] [Related]
14. Predicting subject-driven actions and sensory experience in a virtual world with relevance vector machine regression of fMRI data. Valente G; De Martino F; Esposito F; Goebel R; Formisano E Neuroimage; 2011 May; 56(2):651-61. PubMed ID: 20888922 [TBL] [Abstract][Full Text] [Related]
15. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data. Zhang C; Song S; Wen X; Yao L; Long Z J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758 [TBL] [Abstract][Full Text] [Related]
16. Analysis of FMRI data with drift: modified general linear model and Bayesian estimator. Luo H; Puthusserypady S IEEE Trans Biomed Eng; 2008 May; 55(5):1504-11. PubMed ID: 18440896 [TBL] [Abstract][Full Text] [Related]
17. Reliability-based voxel selection. Tarhan L; Konkle T Neuroimage; 2020 Feb; 207():116350. PubMed ID: 31733373 [TBL] [Abstract][Full Text] [Related]
18. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding. Hirose S; Nambu I; Naito E J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247 [TBL] [Abstract][Full Text] [Related]
19. Voxel selection in FMRI data analysis based on sparse representation. Li Y; Namburi P; Yu Z; Guan C; Feng J; Gu Z IEEE Trans Biomed Eng; 2009 Oct; 56(10):2439-51. PubMed ID: 19567340 [TBL] [Abstract][Full Text] [Related]
20. Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Chen X; Pereira F; Lee W; Strother S; Mitchell T Hum Brain Mapp; 2006 May; 27(5):452-61. PubMed ID: 16565951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]