BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30240902)

  • 1. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data.
    Wen Z; Yu T; Yu Z; Li Y
    Neuroimage; 2019 Jan; 184():417-430. PubMed ID: 30240902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.
    Soch J; Haynes JD; Allefeld C
    Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voxel selection framework in multi-voxel pattern analysis of FMRI data for prediction of neural response to visual stimuli.
    Chou CA; Kampa K; Mehta SH; Tungaraza RF; Chaovalitwongse WA; Grabowski TJ
    IEEE Trans Med Imaging; 2014 Apr; 33(4):925-34. PubMed ID: 24710161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of importance extraction methods in neural network based fMRI classification.
    Gotsopoulos A; Saarimäki H; Glerean E; Jääskeläinen IP; Sams M; Nummenmaa L; Lampinen J
    Neuroimage; 2018 Nov; 181():44-54. PubMed ID: 29964190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
    Yamashita O; Sato MA; Yoshioka T; Tong F; Kamitani Y
    Neuroimage; 2008 Oct; 42(4):1414-29. PubMed ID: 18598768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-decoding fMRI reveals how wholes relate to the sum of parts.
    Kubilius J; Baeck A; Wagemans J; Op de Beeck HP
    Cortex; 2015 Nov; 72():5-14. PubMed ID: 25771992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
    Chaimow D; Uğurbil K; Shmuel A
    Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists.
    Weaverdyck ME; Lieberman MD; Parkinson C
    Soc Cogn Affect Neurosci; 2020 Jun; 15(4):487-509. PubMed ID: 32364607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions.
    Lee D; Yun S; Jang C; Park HJ
    PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting subject-driven actions and sensory experience in a virtual world with relevance vector machine regression of fMRI data.
    Valente G; De Martino F; Esposito F; Goebel R; Formisano E
    Neuroimage; 2011 May; 56(2):651-61. PubMed ID: 20888922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
    Zhang C; Song S; Wen X; Yao L; Long Z
    J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of FMRI data with drift: modified general linear model and Bayesian estimator.
    Luo H; Puthusserypady S
    IEEE Trans Biomed Eng; 2008 May; 55(5):1504-11. PubMed ID: 18440896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability-based voxel selection.
    Tarhan L; Konkle T
    Neuroimage; 2020 Feb; 207():116350. PubMed ID: 31733373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voxel selection in FMRI data analysis based on sparse representation.
    Li Y; Namburi P; Yu Z; Guan C; Feng J; Gu Z
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2439-51. PubMed ID: 19567340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring predictive and reproducible modeling with the single-subject FIAC dataset.
    Chen X; Pereira F; Lee W; Strother S; Mitchell T
    Hum Brain Mapp; 2006 May; 27(5):452-61. PubMed ID: 16565951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.