BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30241041)

  • 1. Spatiotemporal changes in soil phosphorus characteristics in a submerged aquatic vegetation-dominated treatment wetland.
    Zamorano MF; Bhomia RK; Chimney MJ; Ivanoff D
    J Environ Manage; 2018 Dec; 228():363-372. PubMed ID: 30241041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.
    Dierberg FE; DeBusk TA; Jackson SD; Chimney MJ; Pietro K
    Water Res; 2002 Mar; 36(6):1409-22. PubMed ID: 11996331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil phosphorus forms and storage in stormwater treatment areas of the Everglades: Influence of vegetation and nutrient loading.
    Reddy KR; Vardanyan L; Hu J; Villapando O; Bhomia RK; Smith T; Harris WG; Newman S
    Sci Total Environ; 2020 Jul; 725():138442. PubMed ID: 32464752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term sustainable phosphorus (P) retention in a low-P stormwater wetland for Everglades restoration.
    Dierberg FE; DeBusk TA; Kharbanda MD; Potts JA; Grace KA; Jerauld MJ; Ivanoff DB
    Sci Total Environ; 2021 Feb; 756():143386. PubMed ID: 33280863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the spatial distribution of soil properties in a northern Everglades marsh.
    Corstanje R; Grunwald S; Reddy KR; Osborne TZ; Newman S
    J Environ Qual; 2006; 35(3):938-49. PubMed ID: 16641332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands.
    Bhomia RK; Reddy KR
    J Environ Qual; 2018 Mar; 47(2):361-370. PubMed ID: 29634798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic phosphorus sequestration in subtropical treatment wetlands.
    Turner BL; Newman S; Newman JM
    Environ Sci Technol; 2006 Feb; 40(3):727-33. PubMed ID: 16509310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area.
    Dierberg FE; DeBusk TA; Henry JL; Jackson SD; Galloway S; Gabriel MC
    J Environ Qual; 2012; 41(5):1661-73. PubMed ID: 23099958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water, vegetation and sediment gradients in submerged aquatic vegetation mesocosms used for low-level phosphorus removal.
    DeBusk TA; Kharbanda M; Jackson SD; Grace KA; Hileman K; Dierberg FE
    Sci Total Environ; 2011 Nov; 409(23):5046-56. PubMed ID: 21925712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus retention within a relic agricultural ditch in a constructed wetland.
    Duersch BG; Powers MO; Newman S; Ricca JG; Bhadha JH; Louda JW
    J Environ Qual; 2021 Sep; 50(5):1171-1183. PubMed ID: 34337746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating ecological thresholds for phosphorus in the Everglades.
    Richardson CJ; King RS; Qian SS; Vaithiyanathan P; Qualls RG; Stow CA
    Environ Sci Technol; 2007 Dec; 41(23):8084-91. PubMed ID: 18186341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of stormwater treatment areas and agricultural best management practices on water quality in the Everglades Protection Area.
    Entry JA; Gottlieb A
    Environ Monit Assess; 2014 Feb; 186(2):1023-37. PubMed ID: 24081816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil biogeochemical characteristics influenced by alum application in a municipal wastewater treatment wetland.
    Malecki-Brown LM; White JR; Reddy KR
    J Environ Qual; 2007; 36(6):1904-13. PubMed ID: 17965393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass decay rate and influencing factors of four submerged aquatic vegetation in Everglades wetland.
    Yang Y; Wang J; Wang Y; He Z
    Int J Phytoremediation; 2020; 22(9):963-971. PubMed ID: 32543912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
    Childers DL; Doren RF; Jones R; Noe GB; Rugge M; Scinto LJ
    J Environ Qual; 2003; 32(1):344-62. PubMed ID: 12549575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of indices to predict phosphorus release from wetland soils.
    Mukherjee A; Nair VD; Clark MW; Reddy KR
    J Environ Qual; 2009; 38(3):878-86. PubMed ID: 19329676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.
    Bhomia RK; Inglett PW; Reddy KR
    Sci Total Environ; 2015 Nov; 533():297-306. PubMed ID: 26172597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.
    Huang W; Chen Q; Ren K; Chen K
    Environ Monit Assess; 2015 Mar; 187(3):97. PubMed ID: 25663397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.