BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30241041)

  • 21. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.
    Kynkäänniemi P; Ulén B; Torstensson G; Tonderski KS
    J Environ Qual; 2013; 42(2):596-605. PubMed ID: 23673852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatio-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A.
    DeBusk WF; Newman S; Reddy KR
    J Environ Qual; 2001; 30(4):1438-46. PubMed ID: 11476523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.
    Ged EC; Boyer TH
    Chemosphere; 2013 May; 91(7):921-7. PubMed ID: 23466281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus removal from Everglades agricultural area runoff by submerged aquatic vegetation/limerock treatment technology: an overview of research.
    Gu B; DeBusk TA; Dierberg FE; Chimney MJ; Pietro KC; Aziz T
    Water Sci Technol; 2001; 44(11-12):101-8. PubMed ID: 11804080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent changes in soil total phosphorus in the Everglades: Water Conservation Area 3.
    Bruland GL; Osborne TZ; Reddy KR; Grunwald S; Newman S; DeBusk WF
    Environ Monit Assess; 2007 Jun; 129(1-3):379-95. PubMed ID: 17057968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.
    Stapanian MA; Schumacher W; Gara B; Monteith SE
    Sci Total Environ; 2016 May; 551-552():556-62. PubMed ID: 26896584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture.
    Sigua GC; Kang WJ; Coleman SW
    J Environ Qual; 2006; 35(6):2374-82. PubMed ID: 17071908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.
    Bellinger BJ; Hagerthey SE; Newman S; Cook MI
    Microb Ecol; 2012 Nov; 64(4):893-908. PubMed ID: 22832920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.
    Lewis DB; Feit SJ
    Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of Reclamation on Soil Nutrients and Microbial Activities in the Huixian Karst Wetland in Guilin].
    Huang KC; Shen YY; Xu GP; Huang YQ; Zhang DN; Sun YJ; Li YQ; He W; Zhou LW
    Huan Jing Ke Xue; 2018 Apr; 39(4):1813-1823. PubMed ID: 29965008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Best management practices for nutrient and sediment retention in urban stormwater runoff.
    Hogan DM; Walbridge MR
    J Environ Qual; 2007; 36(2):386-95. PubMed ID: 17255626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park.
    Osborne TZ; Bruland GL; Newman S; Reddy KR; Grunwald S
    Environ Monit Assess; 2011 Dec; 183(1-4):395-408. PubMed ID: 21374053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nutrient profiles in the everglades: examination along the eutrophication gradient.
    Vaithiyanathan P; Richardson CJ
    Sci Total Environ; 1997 Oct; 205(1):81-95. PubMed ID: 9352671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Everglades Nutrient Removal Project test cells: STA optimization--status of the research at the north site.
    Newman JM; Lynch T
    Water Sci Technol; 2001; 44(11-12):117-22. PubMed ID: 11804082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accounting for the Impact of Management Scenarios on Typha Domingensis (Cattail) in an Everglades Wetland.
    Lagerwall G; Kiker G; Muñoz-Carpena R; Wang N
    Environ Manage; 2017 Jan; 59(1):129-140. PubMed ID: 27812795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term relationship between phosphorus inputs and wetland phosphorus concentrations in a northern Everglades marsh.
    Smith EP; McCormick PV
    Environ Monit Assess; 2001 May; 68(2):153-76. PubMed ID: 11411142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland.
    Pant HK; Reddy KR; Dierberg FE
    J Environ Qual; 2002; 31(5):1748-56. PubMed ID: 12371195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effectiveness of various wetland vegetation species on mitigating water pollution from highway runoff.
    Luo Y; Sun S; Zhang H
    Water Environ Res; 2019 Sep; 91(9):906-917. PubMed ID: 31033132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system.
    Gao P; Liu Y; Wang Y; Liu X; Wang Z; Ma LQ
    Chemosphere; 2019 Apr; 220():644-650. PubMed ID: 30599322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dry Wetlands: Nutrient Dynamics in Ephemeral Constructed Stormwater Wetlands.
    Macek CL; Hale RL; Baxter CV
    Environ Manage; 2020 Jan; 65(1):32-45. PubMed ID: 31761956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.