These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30241317)

  • 21. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton Network Flexibility Enables Robustness and Large Electric Fields in the Ketosteroid Isomerase Active Site.
    Wang L; Fried SD; Markland TE
    J Phys Chem B; 2017 Oct; 121(42):9807-9815. PubMed ID: 28915043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Calculation of Electric Fields Inside Enzymes.
    Wang X; He X; Zhang JZ
    Methods Enzymol; 2016; 578():45-72. PubMed ID: 27497162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fragment-based quantum mechanical calculation of protein-protein binding affinities.
    Wang Y; Liu J; Li J; He X
    J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric Fields and Enzyme Catalysis.
    Fried SD; Boxer SG
    Annu Rev Biochem; 2017 Jun; 86():387-415. PubMed ID: 28375745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids.
    Liu J; He X
    Phys Chem Chem Phys; 2020 Jun; 22(22):12341-12367. PubMed ID: 32459230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".
    Chen D; Savidge T
    Science; 2015 Aug; 349(6251):936. PubMed ID: 26315427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?
    Bradshaw RT; Dziedzic J; Skylaris CK; Essex JW
    J Chem Inf Model; 2020 Jun; 60(6):3131-3144. PubMed ID: 32298113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs.
    Shen C; Wang X; He X
    Front Chem; 2021; 9():801062. PubMed ID: 35004616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method.
    Shen C; Jin X; Glover WJ; He X
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the Catalytic Contribution from a Positioned General Base in Ketosteroid Isomerase.
    Lamba V; Yabukarski F; Pinney M; Herschlag D
    J Am Chem Soc; 2016 Aug; 138(31):9902-9. PubMed ID: 27410422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton affinity of the oxyanion hole in the active site of ketosteroid isomerase.
    Childs W; Boxer SG
    Biochemistry; 2010 Mar; 49(12):2725-31. PubMed ID: 20143849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins.
    Liu J; Zhang JZ; He X
    Phys Chem Chem Phys; 2016 Jan; 18(3):1864-75. PubMed ID: 26686896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen bonding in the active site of ketosteroid isomerase: electronic inductive effects and hydrogen bond coupling.
    Hanoian P; Sigala PA; Herschlag D; Hammes-Schiffer S
    Biochemistry; 2010 Dec; 49(48):10339-48. PubMed ID: 21049962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of conserved Met112 residue in the catalytic activity and stability of ketosteroid isomerase.
    Cha HJ; Jang do S; Jeong JH; Hong BH; Yun YS; Shin EJ; Choi KY
    Biochim Biophys Acta; 2016 Oct; 1864(10):1322-7. PubMed ID: 27375051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".
    Fried SD; Boxer SG
    Science; 2015 Aug; 349(6251):936. PubMed ID: 26315428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extreme Catalytic Power of Ketosteroid Isomerase Related to the Reversal of Proton Dislocations in Hydrogen-Bond Network.
    Kędzierski P; Zaczkowska M; Sokalski WA
    J Phys Chem B; 2020 May; 124(18):3661-3666. PubMed ID: 32293890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of mutation on proton transfer reactions in ketosteroid isomerase: insights from molecular dynamics simulations.
    Chakravorty DK; Hammes-Schiffer S
    J Am Chem Soc; 2010 Jun; 132(21):7549-55. PubMed ID: 20450180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.