BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30241453)

  • 1. Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?
    Postol N; Marquez J; Spartalis S; Bivard A; Spratt NJ
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):764-775. PubMed ID: 30241453
    [No Abstract]   [Full Text] [Related]  

  • 2. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What does evidence tell us about the use of gait robotic devices in patients with multiple sclerosis? A comprehensive systematic review on functional outcomes and clinical recommendations.
    Calabrò RS; Cassio A; Mazzoli D; Andrenelli E; Bizzarini E; Campanini I; Carmignano SM; Cerulli S; Chisari C; Colombo V; Dalise S; Fundarò C; Gazzotti V; Mazzoleni D; Mazzucchelli M; Melegari C; Merlo A; Stampacchia G; Boldrini P; Mazzoleni S; Posteraro F; Benanti P; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Petrarca M; Picelli A; Senatore M; Turchetti G; Morone G; Bonaiuti D;
    Eur J Phys Rehabil Med; 2021 Oct; 57(5):841-849. PubMed ID: 34547886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials.
    Bowman T; Gervasoni E; Amico AP; Antenucci R; Benanti P; Boldrini P; Bonaiuti D; Burini A; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Mazzoleni S; Mestanza Mattos FG; Molteni F; Morone G; Petrarca M; Picelli A; Posteraro F; Senatore M; Turchetti G; Crea S; Cattaneo D; Carrozza MC;
    Eur J Phys Rehabil Med; 2021 Apr; 57(2):246-253. PubMed ID: 33541044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.
    de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Kickstart Walk Assist System for improving balance and walking function in stroke survivors: a feasibility study.
    Yao J; Sado T; Wang W; Gao J; Zhao Y; Qi Q; Mukherjee M
    J Neuroeng Rehabil; 2021 Feb; 18(1):42. PubMed ID: 33627142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of robot-(Morning Walk
    Kim J; Kim DY; Chun MH; Kim SW; Jeon HR; Hwang CH; Choi JK; Bae S
    Clin Rehabil; 2019 Mar; 33(3):516-523. PubMed ID: 30326747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overground wearable powered exoskeleton for gait training in subacute stroke subjects: clinical and gait assessments.
    Goffredo M; Guanziroli E; Pournajaf S; Gaffuri M; Gasperini G; Filoni S; Baratta S; Damiani C; Franceschini M; Molteni F;
    Eur J Phys Rehabil Med; 2019 Dec; 55(6):710-721. PubMed ID: 30723189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials.
    Elbanna ST; Elshennawy S; Ayad MN
    Arch Phys Med Rehabil; 2019 Oct; 100(10):1945-1963. PubMed ID: 31078616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.
    Puyuelo-Quintana G; Cano-de-la-Cuerda R; Plaza-Flores A; Garces-Castellote E; Sanz-Merodio D; Goñi-Arana A; Marín-Ojea J; García-Armada E
    J Neuroeng Rehabil; 2020 May; 17(1):60. PubMed ID: 32375815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 18. Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions.
    Jayaraman A; Burt S; Rymer WZ
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3():S48-S56. PubMed ID: 28654477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis.
    Bruni MF; Melegari C; De Cola MC; Bramanti A; Bramanti P; Calabrò RS
    J Clin Neurosci; 2018 Feb; 48():11-17. PubMed ID: 29208476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among non-ambulatory chronic acquired brain injury survivors.
    Lee HY; Park JH; Kim TW
    Medicine (Baltimore); 2021 May; 100(18):e25125. PubMed ID: 33950915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.