BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30241453)

  • 21. Music therapy for acquired brain injury.
    Bradt J; Magee WL; Dileo C; Wheeler BL; McGilloway E
    Cochrane Database Syst Rev; 2010 Jul; (7):CD006787. PubMed ID: 20614449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study.
    Kozlowski AJ; Fabian M; Lad D; Delgado AD
    Arch Phys Med Rehabil; 2017 Jul; 98(7):1300-1307. PubMed ID: 28315666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.
    Morris L; Diteesawat RS; Rahman N; Turton A; Cramp M; Rossiter J
    J Neuroeng Rehabil; 2023 Jan; 20(1):18. PubMed ID: 36717869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.
    Puyuelo-Quintana G; Cano-de-la-Cuerda R; Plaza-Flores A; Garces-Castellote E; Sanz-Merodio D; Goñi-Arana A; Marín-Ojea J; García-Armada E
    J Neuroeng Rehabil; 2020 May; 17(1):60. PubMed ID: 32375815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations.
    Calabrò RS; Sorrentino G; Cassio A; Mazzoli D; Andrenelli E; Bizzarini E; Campanini I; Carmignano SM; Cerulli S; Chisari C; Colombo V; Dalise S; Fundarò C; Gazzotti V; Mazzoleni D; Mazzucchelli M; Melegari C; Merlo A; Stampacchia G; Boldrini P; Mazzoleni S; Posteraro F; Benanti P; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Morone G; Petrarca M; Picelli A; Senatore M; Turchetti G; Bonaiuti D;
    Eur J Phys Rehabil Med; 2021 Jun; 57(3):460-471. PubMed ID: 33947828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of mirror therapy on walking ability, balance and lower limb motor recovery after stroke: a systematic review and meta-analysis of randomized controlled trials.
    Li Y; Wei Q; Gou W; He C
    Clin Rehabil; 2018 Aug; 32(8):1007-1021. PubMed ID: 29644880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Lower Limb Exoskeletons as an Assessment Tool for Human Motor Performance: A Systematic Review.
    Moeller T; Moehler F; Krell-Roesch J; Dežman M; Marquardt C; Asfour T; Stein T; Woll A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury.
    Beretta E; Romei M; Molteni E; Avantaggiato P; Strazzer S
    Brain Inj; 2015; 29(7-8):955-62. PubMed ID: 25915458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Robot-Assisted Gait Training in a Large Population of Children With Motor Impairment Due to Cerebral Palsy or Acquired Brain Injury.
    Beretta E; Storm FA; Strazzer S; Frascarelli F; Petrarca M; Colazza A; Cordone G; Biffi E; Morganti R; Maghini C; Piccinini L; Reni G; Castelli E
    Arch Phys Med Rehabil; 2020 Jan; 101(1):106-112. PubMed ID: 31562873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of gaming console exercise and its effect on endurance, gait and balance in people with an acquired brain injury.
    McClanachan NJ; Gesch J; Wuthapanich N; Fleming J; Kuys SS
    Brain Inj; 2013; 27(12):1402-8. PubMed ID: 24102295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review.
    Swinnen E; Beckwée D; Meeusen R; Baeyens JP; Kerckhofs E
    Top Stroke Rehabil; 2014; 21(2):87-100. PubMed ID: 24710969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review.
    Holanda LJ; Silva PMM; Amorim TC; Lacerda MO; Simão CR; Morya E
    J Neuroeng Rehabil; 2017 Dec; 14(1):126. PubMed ID: 29202845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.