BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 30241745)

  • 1. Variations in slice sensitivity profile for various height settings in tomosynthesis imaging: Phantom study.
    Kuramoto T; Morishita J; Kato T; Nakamura Y
    Phys Med; 2018 Sep; 53():108-117. PubMed ID: 30241745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of geometry for measuring section thickness in tomosynthesis.
    Fukui R; Ishii R; Kishimoto J; Yamato S; Takahata A; Kohama C
    Radiol Phys Technol; 2014 Jan; 7(1):141-7. PubMed ID: 24254729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel-scanning tomosynthesis using a slot scanning technique: fixed-focus reconstruction and the resulting image quality.
    Shibata K; Notohara D; Sakai T
    Med Phys; 2014 Nov; 41(11):111903. PubMed ID: 25370636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of a phantom for tomosynthesis with potential for automated analysis via the cloud.
    Goodenough D; Levy J; Olafsdottir H; Olafsson I
    J Appl Clin Med Phys; 2018 May; 19(3):291-300. PubMed ID: 29508535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT.
    Nosratieh A; Yang K; Aminololama-Shakeri S; Boone JM
    Med Phys; 2012 Dec; 39(12):7254-61. PubMed ID: 23231276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis.
    Maki AK; Mainprize JG; Yaffe MJ
    Med Phys; 2016 Aug; 43(8):4803. PubMed ID: 27487898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of system sharpness for two digital breast tomosynthesis systems.
    Marshall NW; Bosmans H
    Phys Med Biol; 2012 Nov; 57(22):7629-50. PubMed ID: 23123601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of slice sensitivity profile for radiographic tomosynthesis.
    Li B; Avinash GB; Eberhard JW; Claus BE
    Med Phys; 2007 Jul; 34(7):2907-16. PubMed ID: 17821999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot.
    Flohr TG; Stierstorfer K; Ulzheimer S; Bruder H; Primak AN; McCollough CH
    Med Phys; 2005 Aug; 32(8):2536-47. PubMed ID: 16193784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of total variation minimization in volume rendering visualization of breast tomosynthesis data.
    Mota AM; Clarkson MJ; Almeida P; Peralta L; Matela N
    Comput Methods Programs Biomed; 2020 Oct; 195():105534. PubMed ID: 32480190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
    James JR; Pavlicek W; Hanson JA; Boltz TF; Patel BK
    AJR Am J Roentgenol; 2017 Feb; 208(2):362-372. PubMed ID: 28112559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of the Z-resolution Measurement in the Digital Breast Tomosynthesis].
    Nishioka S; Numata M; Taniguchi N; Fukui R; Honda M
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2023 Nov; 79(11):1241-1248. PubMed ID: 37766580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.
    Cockmartin L; Bosmans H; Marshall NW
    Med Phys; 2013 Aug; 40(8):081920. PubMed ID: 23927334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic slice thickness measurement on three types of Catphan CT phantoms.
    Anam C; Naufal A; Sutanto H; Arifin Z; Hidayanto E; Tan LK; Wong JHD; Ng KH; Shahrudin S; Zain AM; Ahmad F; Dougherty G
    Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37216929
    [No Abstract]   [Full Text] [Related]  

  • 18. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging.
    Ikejimba LC; Graff CG; Rosenthal S; Badal A; Ghammraoui B; Lo JY; Glick SJ
    Med Phys; 2017 Feb; 44(2):407-416. PubMed ID: 27992059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multigrid reconstruction with block-iterative updates for breast tomosynthesis.
    Michielsen K; Nuyts J
    Med Phys; 2015 Nov; 42(11):6537-48. PubMed ID: 26520744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.