These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 30241799)
1. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad. Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799 [TBL] [Abstract][Full Text] [Related]
2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391 [TBL] [Abstract][Full Text] [Related]
3. Supersonic shear wave elastography of human tendons is associated with in vivo tendon stiffness over small strains. Mifsud T; Chatzistergos P; Maganaris C; Chockalingam N; Padhiar N; Stafrace KM; Gatt A J Biomech; 2023 May; 152():111558. PubMed ID: 37004390 [TBL] [Abstract][Full Text] [Related]
4. Heel Pad Stiffness in Plantar Heel Pain by Shear Wave Elastography. Lin CY; Lin CC; Chou YC; Chen PY; Wang CL Ultrasound Med Biol; 2015 Nov; 41(11):2890-8. PubMed ID: 26299685 [TBL] [Abstract][Full Text] [Related]
5. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus. Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895 [No Abstract] [Full Text] [Related]
6. Spatial-dependent mechanical properties of the heel pad by shear wave elastography. Lin CY; Chen PY; Shau YW; Tai HC; Wang CL J Biomech; 2017 Feb; 53():191-195. PubMed ID: 28087063 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements. Vachutka J; Sedlackova Z; Furst T; Herman M; Herman J; Salzman R; Dolezal L Ultrason Imaging; 2018 Nov; 40(6):380-393. PubMed ID: 30101677 [TBL] [Abstract][Full Text] [Related]
8. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study. Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052 [TBL] [Abstract][Full Text] [Related]
9. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques. Manickam K; Machireddy RR; Seshadri S J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915 [TBL] [Abstract][Full Text] [Related]
10. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments. Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413 [TBL] [Abstract][Full Text] [Related]
12. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002 [TBL] [Abstract][Full Text] [Related]
13. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Gu Y; Li J; Ren X; Lake MJ; Zeng Y Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997 [TBL] [Abstract][Full Text] [Related]
14. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium. Caenen A; Shcherbakova D; Verhegghe B; Papadacci C; Pernot M; Segers P; Swillens A IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):439-50. PubMed ID: 25768813 [TBL] [Abstract][Full Text] [Related]
15. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation. Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970 [TBL] [Abstract][Full Text] [Related]
16. An inverse finite-element model of heel-pad indentation. Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330 [TBL] [Abstract][Full Text] [Related]
17. A novel fast full inversion based breast ultrasound elastography technique. Karimi H; Fenster A; Samani A Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227 [TBL] [Abstract][Full Text] [Related]
18. Plantar Soft Tissue Characterization Using Reverberant Shear Wave Elastography: A Proof-of-Concept Study. Romero SE; Naemi R; Flores G; Allan D; Ormachea J; Gutierrez E; Casado FL; Castaneda B Ultrasound Med Biol; 2022 Jan; 48(1):35-46. PubMed ID: 34702642 [TBL] [Abstract][Full Text] [Related]
19. Altered stiffness of microchamber and macrochamber layers in the aged heel pad: Shear wave ultrasound elastography evaluation. Wu CH; Lin CY; Hsiao MY; Cheng YH; Chen WS; Wang TG J Formos Med Assoc; 2018 May; 117(5):434-439. PubMed ID: 28545991 [TBL] [Abstract][Full Text] [Related]
20. Using ultrasound elastography to monitor human soft tissue behaviour during prolonged loading: A clinical explorative study. Schäfer G; Dobos G; Lünnemann L; Blume-Peytavi U; Fischer T; Kottner J J Tissue Viability; 2015 Nov; 24(4):165-72. PubMed ID: 26165202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]