BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 30241799)

  • 1. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supersonic shear wave elastography of human tendons is associated with in vivo tendon stiffness over small strains.
    Mifsud T; Chatzistergos P; Maganaris C; Chockalingam N; Padhiar N; Stafrace KM; Gatt A
    J Biomech; 2023 May; 152():111558. PubMed ID: 37004390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heel Pad Stiffness in Plantar Heel Pain by Shear Wave Elastography.
    Lin CY; Lin CC; Chou YC; Chen PY; Wang CL
    Ultrasound Med Biol; 2015 Nov; 41(11):2890-8. PubMed ID: 26299685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus.
    Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial-dependent mechanical properties of the heel pad by shear wave elastography.
    Lin CY; Chen PY; Shau YW; Tai HC; Wang CL
    J Biomech; 2017 Feb; 53():191-195. PubMed ID: 28087063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements.
    Vachutka J; Sedlackova Z; Furst T; Herman M; Herman J; Salzman R; Dolezal L
    Ultrason Imaging; 2018 Nov; 40(6):380-393. PubMed ID: 30101677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.
    Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.
    Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y
    Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium.
    Caenen A; Shcherbakova D; Verhegghe B; Papadacci C; Pernot M; Segers P; Swillens A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):439-50. PubMed ID: 25768813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation.
    Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW
    J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plantar Soft Tissue Characterization Using Reverberant Shear Wave Elastography: A Proof-of-Concept Study.
    Romero SE; Naemi R; Flores G; Allan D; Ormachea J; Gutierrez E; Casado FL; Castaneda B
    Ultrasound Med Biol; 2022 Jan; 48(1):35-46. PubMed ID: 34702642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered stiffness of microchamber and macrochamber layers in the aged heel pad: Shear wave ultrasound elastography evaluation.
    Wu CH; Lin CY; Hsiao MY; Cheng YH; Chen WS; Wang TG
    J Formos Med Assoc; 2018 May; 117(5):434-439. PubMed ID: 28545991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using ultrasound elastography to monitor human soft tissue behaviour during prolonged loading: A clinical explorative study.
    Schäfer G; Dobos G; Lünnemann L; Blume-Peytavi U; Fischer T; Kottner J
    J Tissue Viability; 2015 Nov; 24(4):165-72. PubMed ID: 26165202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.