BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30242660)

  • 1. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans.
    Fatima S; Shukla S; Nazir A
    Protein J; 2018 Dec; 37(6):572-580. PubMed ID: 30242660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle.
    Lehmann S; Bass JJ; Barratt TF; Ali MZ; Szewczyk NJ
    J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):660-672. PubMed ID: 28508547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase.
    Yoder JH; Chong H; Guan KL; Han M
    EMBO J; 2004 Jan; 23(1):111-9. PubMed ID: 14685271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional characterization of a putative IDE, C28F5.4 (ceIDE-1), in Caenorhabditis elegans: Implications for Alzheimer's disease.
    Haque R; Nazir A
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2454-2462. PubMed ID: 27443962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo.
    Gruneberg U; Glotzer M; Gartner A; Nigg EA
    J Cell Biol; 2002 Sep; 158(5):901-14. PubMed ID: 12213836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic subunits of Ser/Thr protein phosphatases from Caenorhabditis elegans.
    Zeke T; Gergely P; Dombrádi V
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Feb; 119(2):317-24. PubMed ID: 9629665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites.
    Kao G; Tuck S; Baillie D; Sundaram MV
    Development; 2004 Feb; 131(4):755-65. PubMed ID: 14724126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the PP2C family in Caenorhabditis: rapid divergence of the sex-determining protein FEM-2.
    Stothard P; Hansen D; Pilgrim D
    J Mol Evol; 2002 Feb; 54(2):267-82. PubMed ID: 11821919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans.
    Ju T; Zheng Q; Cummings RD
    Glycobiology; 2006 Oct; 16(10):947-58. PubMed ID: 16762980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases.
    Rutledge E; Denton J; Strange K
    J Cell Biol; 2002 Aug; 158(3):435-44. PubMed ID: 12163466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Identification of Separase Regulators in
    Melesse M; Sloan DE; Benthal JT; Caylor Q; Gosine K; Bai X; Bembenek JN
    G3 (Bethesda); 2018 Feb; 8(2):695-705. PubMed ID: 29246899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions.
    Byrum CA; Walton KD; Robertson AJ; Carbonneau S; Thomason RT; Coffman JA; McClay DR
    Dev Biol; 2006 Dec; 300(1):194-218. PubMed ID: 17087928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a Caenorhabditis elegans glc seven-like phosphatase (gsp) orthologue from Haemonchus contortus (Nematoda).
    Campbell BE; Rabelo EM; Hofmann A; Hu M; Gasser RB
    Mol Cell Probes; 2010 Aug; 24(4):178-89. PubMed ID: 20153820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling.
    Tops BB; Gauci S; Heck AJ; Krijgsveld J
    J Proteome Res; 2010 Jan; 9(1):341-51. PubMed ID: 19916504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Ser/Thr phosphatases of parasitic protozoa.
    Kutuzov MA; Andreeva AV
    Mol Biochem Parasitol; 2008 Oct; 161(2):81-90. PubMed ID: 18619495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental quiescence: Cdc14 moonlighting in G1.
    Kipreos ET
    Nat Cell Biol; 2004 Aug; 6(8):693-5. PubMed ID: 15303097
    [No Abstract]   [Full Text] [Related]  

  • 17. Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development.
    Chen F; Zhou Y; Qi YB; Khivansara V; Li H; Chun SY; Kim JK; Fu XD; Jin Y
    Genes Dev; 2015 Nov; 29(22):2377-90. PubMed ID: 26588990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways.
    Saini LK; Bheri M; Pandey GK
    Adv Protein Chem Struct Biol; 2023; 134():307-370. PubMed ID: 36858740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response.
    Mizuno T; Hisamoto N; Terada T; Kondo T; Adachi M; Nishida E; Kim DH; Ausubel FM; Matsumoto K
    EMBO J; 2004 Jun; 23(11):2226-34. PubMed ID: 15116070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.