These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30242765)

  • 1. Dorsal Ear Skin Window for Intravital Imaging and Functional Analysis of Lymphangiogenesis.
    Kilarski WW; Güç E; Swartz MA
    Methods Mol Biol; 2018; 1846():261-277. PubMed ID: 30242765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological and Morphological Characterization of Developing Dermal Lymphatic Vessels.
    Betterman KL; Harvey NL
    Methods Mol Biol; 2018; 1846():19-35. PubMed ID: 30242750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and Tools for Analysis of Zebrafish Lymphatic Development.
    Okuda KS; Baek S; Hogan BM
    Methods Mol Biol; 2018; 1846():55-70. PubMed ID: 30242752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse.
    Hägerling R; Pollmann C; Kremer L; Andresen V; Kiefer F
    Biochem Soc Trans; 2011 Dec; 39(6):1674-81. PubMed ID: 22103506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Ear Sponge Lymphangiogenesis Assay.
    Akwii RG; Sajib MS; Zahra FT; Madala HR; Srivenugopal KS; Mikelis CM
    Methods Mol Biol; 2021; 2193():85-96. PubMed ID: 32808261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravital Imaging Reveals Dynamics of Lymphangiogenesis and Valvulogenesis.
    Kang GJ; Ecoiffier T; Truong T; Yuen D; Li G; Lee N; Zhang L; Chen L
    Sci Rep; 2016 Jan; 6():19459. PubMed ID: 26785921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish provides a novel model for lymphatic vascular research.
    Karpanen T; Schulte-Merker S
    Methods Cell Biol; 2011; 105():223-38. PubMed ID: 21951532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling.
    Güç E; Briquez PS; Foretay D; Fankhauser MA; Hubbell JA; Kilarski WW; Swartz MA
    Biomaterials; 2017 Jul; 131():160-175. PubMed ID: 28410495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function.
    Sabine A; Davis MJ; Bovay E; Petrova TV
    Methods Mol Biol; 2018; 1846():97-129. PubMed ID: 30242755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphatics in nanophysiology.
    Hirakawa S; Detmar M; Karaman S
    Adv Drug Deliv Rev; 2014 Jul; 74():12-8. PubMed ID: 24524932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin.
    Kim KE; Cho CH; Kim HZ; Baluk P; McDonald DM; Koh GY
    Arterioscler Thromb Vasc Biol; 2007 Mar; 27(3):564-70. PubMed ID: 17194894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of lymphatic vessel development, growth, and function.
    Pollmann C; Hägerling R; Kiefer F
    Adv Anat Embryol Cell Biol; 2014; 214():167-86. PubMed ID: 24276894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
    Qin W; Baran U; Wang R
    Lasers Surg Med; 2015 Oct; 47(8):669-76. PubMed ID: 26224650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.
    Greiwe L; Vinck M; Suhr F
    Acta Physiol (Oxf); 2016 May; 217(1):61-79. PubMed ID: 26601802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical and experimental research of corneal lymphangiogenesis after keratoplasty.
    Ling S; Lin H; Xiang D; Feng G; Zhang X
    Ophthalmologica; 2008; 222(5):308-16. PubMed ID: 18617753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mucocele: a human model for lymphangiogenesis.
    Castro EC; Galambos C
    Pediatr Dev Pathol; 2009; 12(3):222-8. PubMed ID: 18937525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1::myr-mCherry mice.
    Zhu J; Dugas-Ford J; Chang M; Purta P; Han KY; Hong YK; Dickinson ME; Rosenblatt MI; Chang JH; Azar DT
    FEBS J; 2015 Apr; 282(8):1458-1467. PubMed ID: 25688651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody.
    Pytowski B; Goldman J; Persaud K; Wu Y; Witte L; Hicklin DJ; Skobe M; Boardman KC; Swartz MA
    J Natl Cancer Inst; 2005 Jan; 97(1):14-21. PubMed ID: 15632376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization and Measurement of Lymphatic Function In Vivo.
    Bachmann SB; Detmar M; Proulx ST
    Methods Mol Biol; 2018; 1846():197-211. PubMed ID: 30242761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of approaches for microscopic imaging of skin lymphatic vessels.
    Wu X; Yu Z; Liu N
    Scanning; 2012; 34(3):174-80. PubMed ID: 21898460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.