BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30242828)

  • 1. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity.
    de Pierrefeu A; Löfstedt T; Laidi C; Hadj-Selem F; Bourgin J; Hajek T; Spaniel F; Kolenic M; Ciuciu P; Hamdani N; Leboyer M; Fovet T; Jardri R; Houenou J; Duchesnay E
    Acta Psychiatr Scand; 2018 Dec; 138(6):571-580. PubMed ID: 30242828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals.
    Rozycki M; Satterthwaite TD; Koutsouleris N; Erus G; Doshi J; Wolf DH; Fan Y; Gur RE; Gur RC; Meisenzahl EM; Zhuo C; Yin H; Yan H; Yue W; Zhang D; Davatzikos C
    Schizophr Bull; 2018 Aug; 44(5):1035-1044. PubMed ID: 29186619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting individual improvement in schizophrenia symptom severity at 1-year follow-up: Comparison of connectomic, structural, and clinical predictors.
    Kottaram A; Johnston LA; Tian Y; Ganella EP; Laskaris L; Cocchi L; McGorry P; Pantelis C; Kotagiri R; Cropley V; Zalesky A
    Hum Brain Mapp; 2020 Aug; 41(12):3342-3357. PubMed ID: 32469448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia.
    Dwyer DB; Cabral C; Kambeitz-Ilankovic L; Sanfelici R; Kambeitz J; Calhoun V; Falkai P; Pantelis C; Meisenzahl E; Koutsouleris N
    Schizophr Bull; 2018 Aug; 44(5):1060-1069. PubMed ID: 29529270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning.
    Chand GB; Dwyer DB; Erus G; Sotiras A; Varol E; Srinivasan D; Doshi J; Pomponio R; Pigoni A; Dazzan P; Kahn RS; Schnack HG; Zanetti MV; Meisenzahl E; Busatto GF; Crespo-Facorro B; Pantelis C; Wood SJ; Zhuo C; Shinohara RT; Shou H; Fan Y; Gur RC; Gur RE; Satterthwaite TD; Koutsouleris N; Wolf DH; Davatzikos C
    Brain; 2020 Mar; 143(3):1027-1038. PubMed ID: 32103250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual.
    Lei D; Pinaya WHL; Young J; van Amelsvoort T; Marcelis M; Donohoe G; Mothersill DO; Corvin A; Vieira S; Huang X; Lui S; Scarpazza C; Arango C; Bullmore E; Gong Q; McGuire P; Mechelli A
    Hum Brain Mapp; 2020 Apr; 41(5):1119-1135. PubMed ID: 31737978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease.
    Zhao C; Zhu J; Liu X; Pu C; Lai Y; Chen L; Yu X; Hong N
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Apr; 83():27-32. PubMed ID: 29292241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder.
    Schwarz E; Doan NT; Pergola G; Westlye LT; Kaufmann T; Wolfers T; Brecheisen R; Quarto T; Ing AJ; Di Carlo P; Gurholt TP; Harms RL; Noirhomme Q; Moberget T; Agartz I; Andreassen OA; Bellani M; Bertolino A; Blasi G; Brambilla P; Buitelaar JK; Cervenka S; Flyckt L; Frangou S; Franke B; Hall J; Heslenfeld DJ; Kirsch P; McIntosh AM; Nöthen MM; Papassotiropoulos A; de Quervain DJ; Rietschel M; Schumann G; Tost H; Witt SH; Zink M; Meyer-Lindenberg A;
    Transl Psychiatry; 2019 Jan; 9(1):12. PubMed ID: 30664633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data.
    Cai XL; Xie DJ; Madsen KH; Wang YM; Bögemann SA; Cheung EFC; Møller A; Chan RCK
    Hum Brain Mapp; 2020 Jan; 41(1):172-184. PubMed ID: 31571320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers.
    Koutsouleris N; Meisenzahl EM; Borgwardt S; Riecher-Rössler A; Frodl T; Kambeitz J; Köhler Y; Falkai P; Möller HJ; Reiser M; Davatzikos C
    Brain; 2015 Jul; 138(Pt 7):2059-73. PubMed ID: 25935725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study.
    Winterburn JL; Voineskos AN; Devenyi GA; Plitman E; de la Fuente-Sandoval C; Bhagwat N; Graff-Guerrero A; Knight J; Chakravarty MM
    Schizophr Res; 2019 Dec; 214():3-10. PubMed ID: 29274736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach.
    Gould IC; Shepherd AM; Laurens KR; Cairns MJ; Carr VJ; Green MJ
    Neuroimage Clin; 2014; 6():229-36. PubMed ID: 25379435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy.
    Mikolas P; Hlinka J; Skoch A; Pitra Z; Frodl T; Spaniel F; Hajek T
    BMC Psychiatry; 2018 Apr; 18(1):97. PubMed ID: 29636016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects.
    Schnack HG; Nieuwenhuis M; van Haren NE; Abramovic L; Scheewe TW; Brouwer RM; Hulshoff Pol HE; Kahn RS
    Neuroimage; 2014 Jan; 84():299-306. PubMed ID: 24004694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent brain structural abnormalities and multisite individualised classification of schizophrenia using deep neural networks.
    Cui Y; Li C; Liu B; Sui J; Song M; Chen J; Chen Y; Guo H; Li P; Lu L; Lv L; Ning Y; Wan P; Wang H; Wang H; Wu H; Yan H; Yan J; Yang Y; Zhang H; Zhang D; Jiang T
    Br J Psychiatry; 2022 Dec; 221(6):732-739. PubMed ID: 35144702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalization of diffusion magnetic resonance imaging-based brain age prediction model through transfer learning.
    Chen CL; Hsu YC; Yang LY; Tung YH; Luo WB; Liu CM; Hwang TJ; Hwu HG; Isaac Tseng WY
    Neuroimage; 2020 Aug; 217():116831. PubMed ID: 32438048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging.
    Castro E; Gupta CN; Martínez-Ramón M; Calhoun VD; Arbabshirani MR; Turner J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1513-6. PubMed ID: 25570257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies.
    Dietsche B; Kircher T; Falkenberg I
    Aust N Z J Psychiatry; 2017 May; 51(5):500-508. PubMed ID: 28415873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.
    Chen J; Li X; Calhoun VD; Turner JA; van Erp TGM; Wang L; Andreassen OA; Agartz I; Westlye LT; Jönsson E; Ford JM; Mathalon DH; Macciardi F; O'Leary DS; Liu J; Ji S
    Hum Brain Mapp; 2021 Jun; 42(8):2556-2568. PubMed ID: 33724588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern.
    Liu F; Tian H; Li J; Li S; Zhuo C
    Brain Imaging Behav; 2019 Apr; 13(2):493-502. PubMed ID: 29728906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.